首页> 外文OA文献 >Model-based Biomarker Detection and Systematic Analysis in Translational Science
【2h】

Model-based Biomarker Detection and Systematic Analysis in Translational Science

机译:转化科学中基于模型的生物标志物检测与系统分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This dissertation is concerned with the application of mathematical modeling and statistical signal processing into the rapidly expanding fields of proteomics and genomics. The research is guided by a translational goal which drives the problem formalization and experimental design, and leads to optimization, prediction and control of the underlying system. The dissertation is comprised of three interconnected subjects.In the first part of the dissertation, two Bayesian peptide detection algorithms are proposed to optimize the feature extraction step, which is the most fundamental step in mass spectrometry-based proteomics. The algorithms are designed to tackle data processing challenges that are not satisfactorily addressed by existing methods. In contrast to most existing methods, the proposed algorithms perform deisotoping and deconvolution of mass spectra simultaneously, which enables better identification of weak peptide signals. Unlike greedy template-matching algorithms, the proposed methods have the capability to handle complex spectra where features overlap. The proposed methods achieve better sensitivity and accuracy compared to many popular software packages such as msInspect.In the second part of the dissertation, we consider modeling and assessing the entire mass spectrometry-based proteomic data analysis pipeline. Different modules are identified and analyzed, resulting in a framework that captures key factors in system performance. The effects of various model parameters on protein identification rates and quantification errors, differential expression results, and classification performance are examined. The proposed pipeline model can be used to aid experimental design, pinpoint critical bottlenecks, optimize the work flow, and predict biomarker discovery results.Finally, the same system methodology is extended to analyze the work flow in DNA microarray experiments. A model-based approach is developed to explore the relationship among microarray data properties, missing value imputation, and sample classification in a complicated data analysis pipeline. The situations when it is suitable to apply missing value imputation are identified and recommendations regarding imputation are provided. In addition, a missing value rate-related peaking phenomenon is uncovered.
机译:本论文涉及数学建模和统计信号处理在蛋白质组学和基因组学领域的快速发展。这项研究以转换目标为指导,转换目标驱动问题的形式化和实验设计,并导致底层系统的优化,预测和控制。论文由三个相互联系的主题组成。在论文的第一部分,提出了两种贝叶斯肽检测算法来优化特征提取步骤,这是基于质谱的蛋白质组学最基本的步骤。该算法旨在解决现有方法无法令人满意地解决的数据处理难题。与大多数现有方法相比,所提出的算法同时执行质谱的去同位素和去卷积,从而能够更好地识别弱肽信号。与贪婪模板匹配算法不同,所提出的方法具有处理特征重叠的复杂光谱的能力。与许多流行的软件包(例如msInspect)相比,所提出的方法具有更高的灵敏度和准确性。在论文的第二部分,我们考虑对整个基于质谱的蛋白质组学数据分析流程进行建模和评估。标识并分析了不同的模块,从而形成了一个捕获系统性能关键因素的框架。检查了各种模型参数对蛋白质识别率和定量误差,差异表达结果以及分类性能的影响。提出的管道模型可用于辅助实验设计,查明关键瓶颈,优化工作流程并预测生物标志物的发现结果。最后,扩展了相同的系统方法来分析DNA微阵列实验的工作流程。开发了一种基于模型的方法来探索复杂数据分析管道中微阵列数据属性,缺失值归因和样品分类之间的关系。确定适合应用缺失值估算的情况,并提供有关估算的建议。另外,发现了与价值率相关的峰化现象。

著录项

  • 作者

    Sun Youting;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号