首页> 外文OA文献 >Application of convolution and average pressure approximation for solving non-linear flow problems. constant pressure inner boundary condition for gas flow
【2h】

Application of convolution and average pressure approximation for solving non-linear flow problems. constant pressure inner boundary condition for gas flow

机译:卷积和平均压力近似在解决非线性流动问题中的应用。气体恒压内边界条件

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The accurate description of fluid flow through porous media allows an engineer to properly analyze pastbehavior and predict future reservoir performance. In particular, appropriate mathematical models whichdescribe fluid flow through porous media can be applied to well test and production data analysis. Suchapplications result in estimating important reservoir properties such as formation permeability, skin-factor,reservoir size, etc."Real gas" flow problems (i.e., problems where the gas properties are specifically taken as implicitfunctions of pressure, temperature, and composition) are particularly challenging because the diffusivityequation for the "real gas" flow case is strongly non-linear. Whereas different methods exist which allowus to approximate the solution of the real gas diffusivity equation, all of these approximate methods havelimitations. Whether in terms of limited applicability (say a specific pressure range), or due to the relativecomplexity (e.g., iterative character of the solution), each of the existing approximate solutions does havedisadvantages. The purpose of this work is to provide a solution mechanism for the case of timedependentreal gas flow which contains as few "limitations" as possible.In this work, we provide an approach which combines the so-called average pressure approximation, aconvolution for the right-hand-side non-linearity, and the Laplace transformation (original concept was putforth by Mireles and Blasingame). Mireles and Blasingame used a similar scheme to solve the real gasflow problem conditioned by the constant rate inner boundary condition. In this work we provide solutionschemes to solve the constant pressure inner boundary condition problem. Our new semi-analyticalsolution was developed and implemented in the form of a direct (non-iterative) numerical procedure andsuccessfully verified against numerical simulation.Our work shows that while the validity of this approach does have its own assumptions (in particular,referencing the right-hand-side non-linearity to average reservoir pressure (similar to Mireles andBlasingame)), these assumptions are proved to be much less restrictive than those required by existingmethods of solution for this problem. We believe that the accuracy of the proposed solution makes ituniversally applicable for gas reservoir engineering. This suggestion is based on the fact that nopseudotime formulation is used. We note that there are pseudotime implementations for this problem, butwe also note that pseudotime requires a priori knowledge of the pressure distribution in the reservoir oriteration on gas-in-place. Our new approach has no such restrictions.In order to determine limits of validity of the proposed approach (i.e., the limitations imposed by theunderlining assumptions), we discuss the nature of the average pressure approximation (which is the basisfor this work). And, in order to prove the universal applicability of this approach, we have also appliedthis methodology to resolve the time-dependent inner boundary condition for real gas flow in reservoirs.
机译:通过多孔介质的流体流动的准确描述,使工程师可以适当地分析过去的行为并预测未来的储层性能。特别地,描述流体通过多孔介质的流动的适当的数学模型可以应用于试井和生产数据分析。这样的应用导致估计重要的储层性质,例如地层渗透率,表皮因子,储层大小等。“实际气体”流动问题(即,将气体性质专门视为压力,温度和组成的隐函数的问题)尤其如此因为“真实气体”流动情况的扩散率方程是强烈非线性的,所以具有挑战性。尽管存在允许使近似气体扩散系数方程解的不同方法,但是所有这些近似方法都有局限性。无论是在有限的适用性(例如特定压力范围)方面,还是由于相对复杂性(例如溶液的迭代特性),每种现有的近似溶液均具有缺点。这项工作的目的是为时变的实际气体流量提供一种解决机制,该机制包含尽可能少的“限制”。在这项工作中,我们提供了一种方法,该方法结合了所谓的平均压力逼近,右旋手侧非线性和拉普拉斯变换(最初的概念由Mireles和Blasingame提出)。 Mireles和Blasingame使用类似的方案来解决恒定速率内边界条件所限制的实际气流问题。在这项工作中,我们提供解决方案以解决恒压内边界条件问题。我们的新半解析解决方案是以直接(非迭代)数值程序的形式开发和实施的,并针对数值模拟进行了成功验证。我们的工作表明,尽管这种方法的有效性确实有其自己的假设(特别是引用了正确的-相对于平均油藏压力的手部非线性(类似于Mireles和Brasingame),这些假设被证明比该问题的现有解决方法所要求的约束要少得多。我们相信,所提出的解决方案的准确性使其可以普遍应用于气藏工程。该建议基于使用nopseudotime公式的事实。我们注意到存在针对该问题的伪时间实施方式,但是我们也注意到伪时间需要先验知识,即就地气在储层造口过程中的压力分布。我们的新方法没有这种限制。为了确定所提出方法的有效性限制(即下划线假设所施加的限制),我们讨论了平均压力近似的性质(这是这项工作的基础)。并且,为了证明该方法的普遍适用性,我们还应用了该方法来解决随时间变化的内边界条件,以实现储层中真实气体的流动。

著录项

  • 作者

    Zhakupov Mansur;

  • 作者单位
  • 年度 2006
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号