首页> 外文OA文献 >Efficient inference in general semiparametric regression models
【2h】

Efficient inference in general semiparametric regression models

机译:通用半参数回归模型中的有效推断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Semiparametric regression has become very popular in the field of Statistics over theyears. While on one hand more and more sophisticated models are being developed,on the other hand the resulting theory and estimation process has become more andmore involved. The main problems that are addressed in this work are related toefficient inferential procedures in general semiparametric regression problems.We first discuss efficient estimation of population-level summaries in general semiparametricregression models. Here our focus is on estimating general population-levelquantities that combine the parametric and nonparametric parts of the model (e.g.,population mean, probabilities, etc.). We place this problem in a general context,provide a general kernel-based methodology, and derive the asymptotic distributionsof estimates of these population-level quantities, showing that in many cases the estimatesare semiparametric efficient.Next, motivated from the problem of testing for genetic effects on complex traits inthe presence of gene-environment interaction, we consider developing score test ingeneral semiparametric regression problems that involves Tukey style 1 d.f form ofinteraction between parametrically and non-parametrically modeled covariates. Wedevelop adjusted score statistics which are unbiased and asymptotically efficient andcan be performed using standard bandwidth selection methods. In addition, to over come the difficulty of solving functional equations, we give easy interpretations of thetarget functions, which in turn allow us to develop estimation procedures that can beeasily implemented using standard computational methods.Finally, we take up the important problem of estimation in a general semiparametricregression model when covariates are measured with an additive measurement errorstructure having normally distributed measurement errors. In contrast to methodsthat require solving integral equation of dimension the size of the covariate measuredwith error, we propose methodology based on Monte Carlo corrected scores to estimatethe model components and investigate the asymptotic behavior of the estimates.For each of the problems, we present simulation studies to observe the performance ofthe proposed inferential procedures. In addition, we apply our proposed methodologyto analyze nontrivial real life data sets and present the results.
机译:多年来,半参数回归已在统计领域变得非常流行。一方面,越来越多的复杂模型正在开发中,另一方面,由此产生的理论和估计过程也变得越来越复杂。这项工作中要解决的主要问题与一般半参数回归问题中的有效推理程序有关。我们首先讨论了一般半参数回归模型中人口水平摘要的有效估计。在这里,我们的重点是估算结合模型的参数部分和非参数部分(例如人口平均值,概率等)的总体人口水平数量。我们将这个问题放在一般情况下,提供一种基于核的一般方法,并得出这些种群水平数量的估计值的渐近分布,这表明在许多情况下,估计值是半参数有效的。接下来,从遗传测试的问题出发在存在基因-环境相互作用时对复杂性状的影响,我们考虑开发分数测试一般半参数回归问题,该问题涉及参数化和非参数化模型协变量之间相互作用的Tukey样式1 df形式。我们开发了经过调整的分数统计信息,这些统计信息无偏且渐近有效,可以使用标准带宽选择方法来执行。此外,为了克服求解函数方程的困难,我们对目标函数进行了简单的解释,从而使我们能够开发可以使用标准计算方法轻松实现的估算程序。最后,我们解决了估算中的重要问题当使用具有正态分布的测量误差的累加测量误差结构测量协变量时的一般半参数回归模型。与需要求解带有误差的协变量的尺寸维数积分方程的方法相反,我们提出了基于蒙特卡洛校正分数的方法来估计模型分量并研究估计的渐近行为。对于每个问题,我们都进行了仿真研究观察拟议推理程序的执行情况。此外,我们将我们提出的方法应用于分析非平凡的现实生活数据集并给出结果。

著录项

  • 作者

    Maity Arnab;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号