首页> 外文OA文献 >Continuous reservoir simulation model updating and forecasting using a markov chain monte carlo method
【2h】

Continuous reservoir simulation model updating and forecasting using a markov chain monte carlo method

机译:马尔可夫链蒙特卡洛方法的连续油藏模拟模型更新与预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Currently, effective reservoir management systems play a very important part inexploiting reservoirs. Fully exploiting all the possible events for a petroleum reservoir is achallenge because of the infinite combinations of reservoir parameters. There is muchunknown about the underlying reservoir model, which has many uncertain parameters.MCMC (Markov Chain Monte Carlo) is a more statistically rigorous sampling method,with a stronger theoretical base than other methods. The performance of the MCMCmethod on a high dimensional problem is a timely topic in the statistics field.This thesis suggests a way to quantify uncertainty for high dimensional problems byusing the MCMC sampling process under the Bayesian frame. Based on the improvedmethod, this thesis reports a new approach in the use of the continuous MCMC methodfor automatic history matching. The assimilation of the data in a continuous process isdone sequentially rather than simultaneously. In addition, by doing a continuous process,the MCMC method becomes more applicable for the industry. Long periods of time torun just one realization will no longer be a big problem during the sampling process. In addition, newly observed data will be considered once it is available, leading to a betterestimate.The PUNQ-S3 reservoir model is used to test two methods in this thesis. The methods are:STATIC (traditional) SIMULATION PROCESS and CONTINUOUS SIMULATIONPROCESS. The continuous process provides continuously updated probabilistic forecastsof well and reservoir performance, accessible at any time. It can be used to optimizelong-term reservoir performance at field scale.
机译:当前,有效的储层管理系统在开发储层中起着非常重要的作用。由于储层参数的无限组合,因此要充分利用石油储层的所有可能事件是一项挑战。潜在的储层模型具有很多不确定的参数,这一点还为人所知。MCMC(马尔可夫链蒙特卡洛)是一种统计上更为严格的抽样方法,其理论基础比其他方法更为强大。 MCMC方法在高维问题上的性能是统计领域的一个及时主题。本文提出了一种利用贝叶斯框架下的MCMC采样过程来量化高维问题的不确定性的方法。基于改进的方法,本文提出了一种使用连续MCMC方法进行历史自动匹配的新方法。连续过程中数据的同化顺序执行,而不是同时进行。另外,通过连续过程,MCMC方法变得更适用于工业。在采样过程中,长时间运行仅一个实现将不再是一个大问题。此外,一旦获得新的观测数据,便会加以考虑,从而得出更好的估计。本文使用PUNQ-S3储层模型测试两种方法。这些方法是:静态(传统)模拟过程和连续模拟过程。连续过程可提供随时更新的井和储层性能的概率预测的连续更新。它可用于优化油田规模的长期油藏性能。

著录项

  • 作者

    Liu Chang;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号