首页> 外文OA文献 >Predicting bid prices in construction projects using non-parametric statistical models
【2h】

Predicting bid prices in construction projects using non-parametric statistical models

机译:使用非参数统计模型预测建筑项目的投标价格

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bidding is a very competitive process in the construction industry; eachcompetitor?s business is based on winning or losing these bids. Contractors would like topredict the bids that may be submitted by their competitors. This will help contractors toobtain contracts and increase their business. Unit prices that are estimated for eachquantity differ from contractor to contractor. These unit costs are dependent on factorssuch as historical data used for estimating unit costs, vendor quotes, market surveys,amount of material estimated, number of projects the contractor is working on,equipment rental costs, the amount of equipment owned by the contractor, and the riskaverseness of the estimator. These factors are nearly similar when estimators areestimating cost of similar projects. Thus, there is a relationship between the projects thata particular contractor has bid in previous years and the cost the contractor is likely toquote for future projects. This relationship could be used to predict bids that thecontractor might quote for future projects. For example, a contractor may use historicaldata for a certain year for bidding on certain type of projects, the unit prices may beadjusted for size, time and location, but the basis for bidding on projects of similar typesis the same. Statistical tools can be used to model the underlying relationship between the final cost of the project quoted by a contractor to the quantities of materials oramount of tasks performed in a project. There are a number of statistical modelingtechniques, but a model used for predicting costs should be flexible enough that it couldadjust to depict any underlying pattern.Data such as amount of work to be performed for a certain line item, materialcost index, labor cost index and a unique identifier for each participating contractor isused to predict bids that a contractor might quote for a certain project. To perform theanalysis, artificial neural networks and multivariate adaptive regression splines are used.The results obtained from both the techniques are compared, and it is found thatmultivariate adaptive regression splines are able to predict the cost better than artificialneural networks.
机译:在建筑业中,招标是一个非常有竞争力的过程。每个竞争对手的业务都是基于赢得或失去这些出价。承包商希望预测其竞争对手可能提出的投标。这将有助于承包商获得合同并扩大业务。每种承包商估算的单价因承包商而异。这些单位成本取决于各种因素,例如用于估计单位成本的历史数据,供应商报价,市场调查,估计的物料量,承包商正在从事的项目数量,设备租赁成本,承包商拥有的设备数量以及估计量的风险厌恶性。当估算者估算相似项目的成本时,这些因素几乎相似。因此,特定承包商在前几年投标的项目与承包商可能为未来项目报价的成本之间存在关系。这种关系可以用来预测承包商可能为未来项目报价的出价。例如,承包商可以使用特定年份的历史数据来竞标某些类型的项目,可以针对大小,时间和位置来调整单价,但是类似类型的项目的竞标基础是相同的。统计工具可用于对承包商报价的项目最终成本与材料数量或项目中执行的任务数量之间的潜在关系进行建模。有许多统计建模技术,但是用于预测成本的模型应该足够灵活,以便可以调整以描述任何潜在的模式。数据,例如特定订单项要执行的工作量,材料成本指数,人工成本指数和每个参与承包商的唯一标识符用于预测承包商可能为某个项目报价的出价。为了进行分析,使用了人工神经网络和多元自适应回归样条。将两种技术的结果进行比较,发现多元自适应回归样条比人工神经网络能够更好地预测成本。

著录项

  • 作者

    Pawar Roshan;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号