首页> 外文OA文献 >Reservoir Characterization, Formation Evaluation, and 3D Geologic Modeling of the Upper Jurassic Smackover Microbial Carbonate Reservoir and Associated Reservoir Facies at Little Cedar Creek Field, Northeastern Gulf of Mexico
【2h】

Reservoir Characterization, Formation Evaluation, and 3D Geologic Modeling of the Upper Jurassic Smackover Microbial Carbonate Reservoir and Associated Reservoir Facies at Little Cedar Creek Field, Northeastern Gulf of Mexico

机译:墨西哥东北海湾小雪松溪油田上侏罗统地层微生物碳酸盐岩储层及相关储层相的储层表征,形成评价和3D地质建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Little Cedar Creek field is a mature oil field located in southeastern Conecuh County, Alabama, in the northeastern Gulf of Mexico. As of May 2012, 12.5 MMBLS of oil and 14.8 MMCF of natural gas have been produced from the field area. The main reservoirs are microbial carbonate facies and associated nearshore high energy shoal facies of the Upper Jurassic Smackover Formation that overlie conglomerate and sandstone facies of the Norphlet Formation and underlie the argillaceous, anhydritic-carbonaceous facies of the Haynesville Formation. These carbonate reservoirs are composed of vuggy boundstone and moldic grainstone, and the petroleum trap is stratigraphic being controlled primarily by changes in depositional facies. To maximize recovery and investment in the field, an integrated geoscientific-engineering reservoir-wide development plan is needed, including reservoir characterization, modeling, and simulation. This research presents a workflow for geological characterization, formation evaluation, and 3D geologic modeling for fields producing from microbial carbonates and associated reservoirs. The workflow is used to develop a 3D geologic model for the carbonate reservoirs. Step I involves core description and thin section analysis to divide and characterize the different Smackover facies in the field area into 7 units. The main reservoir facies are the microbial boundstone characterized by vuggy porosity and nearshore/shoal grainstone characterized by moldic porosity. Step II is well log correlation and formation evaluation of 113 wells. We use wireline logs and conventional core data analysis data to calculate average porosity values, permeability and water saturations. Neural networks are utilized at this stage to derive permeability where core measurements are absent or partially present across the reservoirs. Step III is building the 3D structural and stratigraphic framework that is populated with the petrophysical parameters calculated in the previous step. Overall, the integration of reservoir characterization, formation evaluation, and 3D geologic modeling provides a sound framework in the establishment of a field/reservoir-wide development plan for optimal primary and enhanced recovery for these Upper Jurassic microbial carbonate and associated reservoirs. Such a reservoir-wide development plan has broad application to other fields producing from microbial carbonate reservoirs.
机译:Little Cedar Creek油田是一个成熟的油田,位于墨西哥东北部阿拉巴马州Conecuh县的东南部。截至2012年5月,该油田的产量为12.5 MMBLS石油和14.8 MMCF天然气。主要储集层是上侏罗统Smackover组的微生物碳酸盐相和相关的近海高能浅滩相,它们覆盖在Norphlet组的砾岩和砂岩相之上,并位于Haynesville组的泥质,无水-碳质相之下。这些碳酸盐岩储集层由疏松的胶结石和发霉的粒状石组成,油气圈闭的地层主要受沉积相变化的控制。为了最大程度地提高油气田的采收率和投资,需要一个综合的地球科学工程油藏范围的开发计划,包括油藏表征,建模和模拟。这项研究为微生物碳酸盐和相关储集层生产的油田提供了用于地质特征,地层评估和3D地质建模的工作流程。该工作流程用于为碳酸盐储层开发3D地质模型。步骤1涉及岩心描述和薄层分析,以将现场区域中不同的Smackover相划分和特征化为7个单元。主要的储集相为以孔隙状孔隙为特征的微生物界石和以发霉性孔隙为特征的近岸/浅滩粒岩。第二步是测井相关性和113口井的地层评价。我们使用电缆测井和常规岩心数据分析数据来计算平均孔隙率值,渗透率和水饱和度。在此阶段,利用神经网络来推导渗透率,而在整个储层中却没有或仅有部分岩心测量值。第三步是建立3D结构和地层框架,其中填充了上一步中计算的岩石物理参数。总体而言,储层表征,地层评估和3D地质建模的集成为建立上层/储层范围的开发计划提供了一个良好的框架,以使这些上侏罗统微生物碳酸盐岩和相关储层获得最佳的初次开采和提高的采收率。这样的整个储层开发计划已广泛应用于由微生物碳酸盐储层生产的其他领域。

著录项

  • 作者

    Al Haddad Sharbel;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号