首页> 外文OA文献 >Inference-based Geometric Modeling for the Generation of Complex Cluttered Virtual Environments
【2h】

Inference-based Geometric Modeling for the Generation of Complex Cluttered Virtual Environments

机译:基于推理的几何建模用于生成复杂的虚拟环境

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As the use of simulation increases across many diff erent application domains,the need for high- fidelity three-dimensional virtual representations of real-world environmentshas never been greater. This need has driven the research and developmentof both faster and easier methodologies for creating such representations. In this research,we present two diff erent inference-based geometric modeling techniques thatsupport the automatic construction of complex cluttered environments.The fi rst method we present is a surface reconstruction-based approach thatis capable of reconstructing solid models from a point cloud capture of a clutteredenvironment. Our algorithm is capable of identifying objects of interest amongst acluttered scene, and reconstructing complete representations of these objects even inthe presence of occluded surfaces. This approach incorporates a predictive modelingframework that uses a set of user provided models for prior knowledge, and appliesthis knowledge to the iterative identifi cation and construction process. Our approachuses a local to global construction process guided by rules for fi tting high qualitysurface patches obtained from these prior models. We demonstrate the application ofthis algorithm on several synthetic and real-world datasets containing heavy clutter and occlusion.The second method we present is a generative modeling-based approach that canconstruct a wide variety of diverse models based on user provided templates. Thistechnique leverages an inference-based construction algorithm for developing solidmodels from these template objects. This algorithm samples and extracts surfacepatches from the input models, and develops a Petri net structure that is used by ouralgorithm for properly fitting these patches in a consistent fashion. Our approach usesthis generated structure, along with a defi ned parameterization (either user-defi nedthrough a simple sketch-based interface or algorithmically de fined through variousmethods), to automatically construct objects of varying sizes and con figurations.These variations can include arbitrary articulation, and repetition and interchangingof parts sampled from the input models.Finally, we affim our motivation by showing an application of these two approaches.We demonstrate how the constructed environments can be easily usedwithin a physically-based simulation, capable of supporting many diff erent applicationdomains.
机译:随着在许多不同应用领域中对仿真的使用不断增加,对真实环境的高保真三维虚拟表示的需求从未如此迫切。这种需求推动了对用于创建此类表示的更快,更容易的方法的研究和开发。在这项研究中,我们提出了两种基于推理的不同几何建模技术,这些技术可支持复杂杂乱环境的自动构建。我们提出的第一种方法是基于表面重构的方法,该方法能够从点云捕获中重建实体模型。混乱的环境。我们的算法能够在杂乱的场景中识别出感兴趣的对象,并且即使在存在被遮挡的曲面的情况下,也可以重建这些对象的完整表示。这种方法结合了预测建模框架,该框架使用一组用户提供的先验知识模型,并将此知识应用于迭代识别和构造过程。我们的方法采用局部到全局的构建过程,并遵循规则来拟合从这些先前模型中获得的高质量表面贴片。我们演示了该算法在包含杂波和遮挡的多个合成和真实数据集上的应用。我们提出的第二种方法是基于生成模型的方法,该方法可以基于用户提供的模板来构建各种各样的模型。该技术利用基于推理的构造算法从这些模板对象开发实体模型。该算法从输入模型中采样并提取表面斑块,并开发出Petri网结构,我们的算法使用该结构以一致的方式正确拟合这些斑块。我们的方法使用这种生成的结构以及定义的参数设置(用户可以通过简单的基于草图的界面定义用户定义的参数,也可以通过算法通过各种方法定义)来自动构建大小和配置不同的对象。这些变化可以包括任意的关节,最后,我们通过展示这两种方法的应用来表达我们的动机。我们演示了如何在基于物理的仿真中轻松使用构建的环境,并能够支持许多不同的应用领域。

著录项

  • 作者

    Biggers Keith Edward;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号