首页> 外文OA文献 >Modeling defective part level due to static and dynamic defects based upon site observation and excitation balance
【2h】

Modeling defective part level due to static and dynamic defects based upon site observation and excitation balance

机译:基于现场观察和激励平衡,对由于静态和动态缺陷导致的缺陷零件级别进行建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Manufacture testing of digital integrated circuits is essential for high quality. However, exhaustive testing is impractical, and only a small subset of all possible test patterns (or test pattern pairs) may be applied. Thus, it is crucial to choose a subset that detects a high percentage of the defective parts and produces a low defective part level. Historically, test pattern generation has often been seen as a deterministic endeavor. Test sets are generated to deterministically ensure that a large percentage of the targeted faults are detected. However, many real defects do not behave like these faults, and a test set that detects them all may still miss many defects. Unfortunately, modeling all possible defects as faults is impractical. Thus, it is important to fortuitously detect unmodeled defects using high quality test sets. To maximize fortuitous detection, we do not assume a high correlation between faults and actual defects. Instead, we look at the common requirements for all defect detection. We deterministically maximize the observations of the leastobserved sites while randomly exciting the defects that may be present. The resulting decrease in defective part level is estimated using the MPGD model. This dissertation describes the MPGD defective part level model and shows how it can be used to predict defective part levels resulting from static defect detection. Unlike many other predictors, its predictions are a function of site observations, not fault coverage, and thus it is generally more accurate at high fault coverages. Furthermore, its components model the physical realities of site observation and defect excitation, and thus it can be used to give insight into better test generation strategies. Next, we investigate the effect of additional constraints on the fortuitous detection of defects-specifically, as we focus on detecting dynamic defects instead of static ones. We show that the quality of the randomness of excitation becomes increasingly important as defect complexity increases. We introduce a new metric, called excitation balance, to estimate the quality of the excitation, and we show how excitation balance relates to the constant ? in the MPGD model.
机译:数字集成电路的制造测试对于高质量至关重要。但是,详尽的测试是不切实际的,并且只能应用所有可能的测试模式(或测试模式对)的一小部分。因此,至关重要的是选择一个子集,该子集可以检测出高百分比的缺陷零件并产生低缺陷零件水平。从历史上看,测试模式生成通常被视为确定性的工作。生成测试集以确定性地确保检测到很大比例的目标故障。但是,许多实际缺陷的行为不像这些缺陷,并且检测到所有缺陷的测试仪可能仍会遗漏许多缺陷。不幸的是,将所有可能的缺陷建模为故障是不切实际的。因此,使用高质量测试集偶然检测未建模的缺陷非常重要。为了最大程度地进行偶然检测,我们不假定故障与实际缺陷之间的相关性很高。相反,我们查看所有缺陷检测的通用要求。我们确定性地最大化观察最少的站点,同时随机激发可能存在的缺陷。使用MPGD模型估算出缺陷零件水平的下降。本文介绍了MPGD缺陷零件水平模型,并说明了如何将其用于预测由静态缺陷检测产生的缺陷零件水平。与许多其他预测器不同,其预测是站点观察的功能,而不是故障覆盖率的函数,因此,在较高的故障覆盖率下,它的预测通常更为准确。此外,它的组件可以模拟现场观察和缺陷激发的物理现实,因此可以用来深入了解更好的测试生成策略。接下来,我们将重点研究动态缺陷而非静态缺陷,从而研究附加约束对缺陷的偶然检测的影响。我们表明,随着缺陷复杂度的增加,激励随机性的质量变得越来越重要。我们引入了一个新的度量标准,称为激励平衡,以评估激励的质量,并展示了激励平衡与常数之间的关系。在MPGD模型中。

著录项

  • 作者

    Dworak Jennifer Lynn;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 en_US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号