首页> 外文OA文献 >Analytical and numerical analysis of bifurcations in thermal convection of viscoelastic fluids saturating a porous square box
【2h】

Analytical and numerical analysis of bifurcations in thermal convection of viscoelastic fluids saturating a porous square box

机译:饱和多孔方箱的粘弹性流体热对流中分叉的分析和数值分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We report theoretical and numerical results on bifurcations in thermal instability for audviscoelastic fluid saturating a porous square cavity heated from below. The modifiedudDarcy law based on the Oldroyd-B model was used for modeling the momentumudequation. In addition to Rayleigh number ℜ, two more dimensionless parametersudare introduced, namely, the relaxation time λ1 and the retardation time λ2. Temporaludstability analysis showed that the first bifurcation from the conductive state may beudeither oscillatory for sufficiently elastic fluids or stationary for weakly elastic fluids.udThe dynamics associated with the nonlinear interaction between the two kinds ofudinstabilities is first analyzed in the framework of a weakly nonlinear theory. Forudsufficiently elastic fluids, analytical expressions of the nonlinear threshold aboveudwhich a second hysteretic bifurcation from oscillatory to stationary convective patternudare derived and found to agree with two-dimensional numerical simulations of theudfull equations. Computations performed with high Rayleigh number indicated thatudthe system exhibits a third transition from steady single-cell convection to oscillatoryudmulti-cellular flows. Moreover, we found that an intermittent oscillation regime mayudexist with steady state before the emergence of the secondary Hopf bifurcation. Forudweakly elastic fluids, we determined a second critical value ℜOscud2 (λ1, λ2) aboveudwhich a Hopf bifurcation from steady convective pattern to oscillatory convectionudoccurs. The well known limit of ℜOscud2 (λ1 = 0, λ2 = 0) = 390 for Newtonian fluids isudrecovered, while the fluid elasticity is found to delay the onset of the Hopf bifurcation.udThe major new findings were presented in the form of bifurcation diagrams asudfunctions of viscoelastic parameters for ℜ up to 420. Published by AIP Publishing
机译:我们报告了一个关于热不稳定的分叉的理论和数值结果,该渗流使从下方加热的多孔方腔饱和。利用基于Oldroyd-B模型的修正 udDarcy定律对动量渗流进行建模。除了瑞利数ℜ,还引入了另外两个无量纲参数,即弛豫时间λ1和延迟时间λ2。时间/稳定性分析表明,从导电状态开始的第一个分叉可能对于足够弹性的流体来说不是振荡的,对于弱弹性流体来说是不稳定的。 ud首先在框架中分析了与这两种不稳定性之间的非线性相互作用相关的动力学。非线性理论的基础。对于弹性不足的流体,可以推导出高于非线性阈值的解析表达式,该表达式的第二次滞后分叉是从振荡到平稳对流模式,并发现与非线性方程的二维数值模拟相吻合。用高瑞利数进行的计算表明,系统呈现出从稳定的单细胞对流到振荡的/多细胞流动的第三次过渡。此外,我们发现,在次要Hopf分叉出现之前,间歇振动状态可能趋于稳定。对于弱弹性流体,我们确定第二个临界值ℜOsc ud2(λ1,λ2)在其上方,从稳定对流模式到振荡对流的Hopf分叉出现。牛顿流体的ℜOsc ud2(λ1= 0,λ2= 0)= 390的众所周知的极限被 udrecovered,而流体的弹性被发现延迟了霍普夫分叉的发生。 ud最多420的粘弹性参数函数的分叉图的形式。由AIP Publishing发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号