首页> 外文OA文献 >A Practical Outlier Detection Approach for Mixed-Attribute Data
【2h】

A Practical Outlier Detection Approach for Mixed-Attribute Data

机译:一种实用的混合属性数据异常值检测方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Outlier detection in mixed-attribute space is a challenging problem for which only few approaches have been proposed. However, such existing methods suffer from the fact that there is a lack of an automatic mechanism to formally discriminate between outliers and inliers. In fact, a common approach to outlier identi�cation is to estimate an outlier score for each object and then provide a ranked list of points, expecting outliers to come �rst. A major problem of such an approach is where to stop reading the ranked list? How many points should be chosen as outliers? Other methods, instead of outlier ranking, implement various strategies that depend on user-speci�ed thresholds to discriminate outliers from inliers. Ad hoc threshold values are often used. With such an unprincipled approach it is impossible to be objective or consistent. To alleviate these problems, we propose a principled approach based on the bivariate beta mixture model to identify outliers in mixed attribute data. The proposed approach is able to automatically discriminate outliers from inliers and it can be applied to both mixed-type attribute and single-type (numerical or categorical) attribute data without any feature transformation. Our experimental study demonstrates the suitability of the proposed approach in comparison to mainstream methods.
机译:混合属性空间中的异常值检测是一个具有挑战性的问题,对此仅提出了几种方法。但是,这样的现有方法遭受以下事实的困扰:缺乏自动机制来正式地区分离群值和离群值。实际上,一种异常值识别的常用方法是估算每个对象的异常值,然后提供一个等级的点列表,以期望异常值首次出现。这种方法的主要问题是在哪里停止阅读排名表?应该选择多少个点作为离群值?其他方法代替离群值排名,而是实施各种策略,这些策略取决于用户指定的阈值以区分离群值与离群值。经常使用临时阈值。采用这种无原则的方法是不可能客观或一致的。为了缓解这些问题,我们提出了一种基于双变量β混合模型的有原则的方法来识别混合属性数据中的异常值。所提出的方法能够自动区分离群值与离群值,并且可以将其应用于混合类型属性和单一类型(数字或类别)属性数据,而无需任何特征转换。我们的实验研究表明,与主流方法相比,该方法的适用性。

著录项

  • 作者

    Bouguessa Mohamed;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号