首页> 外文OA文献 >An integrated multibody dynamics computational framework for design optimization of wind turbine drivetrains considering wind load uncertainty
【2h】

An integrated multibody dynamics computational framework for design optimization of wind turbine drivetrains considering wind load uncertainty

机译:考虑风荷载不确定性的风力机传动系统设计优化的集成多体动力学计算框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The objective of this study is to develop an integrated multibody dynamics computational framework for the deterministic and reliability-based design optimization of wind turbine drivetrains to obtain an optimal wind turbine gear design that ensures a target reliability under wind load and gear manufacturing uncertainties. Gears in wind turbine drivetrains are subjected to severe cyclic loading due to variable wind loads that are stochastic in nature. Thus, the failure rate of drivetrain systems is reported to be relatively higher than the other wind turbine components. It is known in wind energy industry that improving reliability of drivetrain designs is one of the key issues to make wind energy competitive as compared to fossil fuels. Furthermore, a wind turbine is a multi-physics system involving random wind loads, rotor blade aerodynamics, gear dynamics, electromagnetic generator and control systems. This makes an accurate prediction of product life of drivetrains challenging and very limited studies have been carried out regarding design optimization including the reliability-based design optimization (RBDO) of geared systems considering wind load and manufacturing uncertainties.In order to address these essential and challenging issues on design optimization of wind turbine drivetrains under wind load and gear manufacturing uncertainties, the following issues are discussed in this study: (1) development of an efficient numerical procedure for gear dynamics simulation of complex multibody geared systems based on the multi-variable tabular contact search algorithm to account for detailed gear tooth contact geometry with profile modifications or surface imperfections; (2) development of an integrated multibody dynamics computational framework for deterministic and reliability-based design optimization of wind turbine drivetrains using the gear dynamics simulation software developed in (1) and RAMDO software by incorporating wide spatiotemporal wind load uncertainty model, pitting gear tooth contact fatigue model, and rotor blade aerodynamics model using NREL AeroDyn/FAST; and (3) deterministic and reliability-based design optimization of wind turbine drivetrain to minimize total weight of a drivetrain system while ensuring 20-year reliable service life with wind load and gear manufacturing uncertainties using the numerical procedure developed in this study.To account for the wind load uncertainty, the joint probability density function (PDF) of 10-minute mean wind speed (V₁₀) and 10-minute turbulence intensity (I₁₀) is introduced for wind turbine drivetrain dynamics simulation. To consider wide spatiotemporal wind uncertainty (i.e., wind load uncertainty for different locations and in different years), uncertainties of all the joint PDF parameters of V₁₀, I₁₀ and copula are considered, and PDF for each parameter is identified using 249 sets of wind data. This wind uncertainty model allows for the consideration of a wide range of probabilistic wind loads in the contact fatigue life prediction. For a given V₁₀ and I₁₀ obtained from the stochastic wind model, the random time-domain wind speed data is generated using NREL TurbSim, and then inputted into NREL FAST to perform the aerodynamic simulation of rotor blades to predict the transmitted torque and speed of the main shaft of the drivetrain that are sent to the multibody gear dynamics simulation as an input.In order to predict gear contact fatigue life, a high-fidelity gear dynamics simulation model that considers the detailed gear contact geometry as well as the mesh stiffness variation needs to be developed to find the variability of maximum contact stresses under wind load uncertainty. This, however, leads to a computationally intensive procedure. To eliminate the computationally intensive iterative online collision detection algorithm, a numerical procedure for the multibody gear dynamics simulation based on the tabular contact search algorithm is proposed. Look-up contact tables are generated for a pair of gear tooth profiles by the contact geometry analysis prior to the dynamics simulation and the contact points that fulfill the non-conformal contact condition and mesh stiffness at each contact point are calculated for all pairs of gears in the drivetrain model.This procedure allows for the detection of gear tooth contact in an efficient manner while retaining the precise contact geometry and mesh stiffness variation in the evaluation of mesh forces, thereby leading to a computationally efficient gear dynamics simulation suited for the design optimization procedure considering wind load uncertainty. Furthermore, the accuracy of mesh stiffness model introduced in this study and transmission error of gear tooth with tip relief are discussed, and a wind turbine drivetrain model developed using this approach is validated against test data provided in the literature.The gear contact fatigue life is predicted based on the gear tooth pitting fatigue criteria and is defined by the sum of the number of stress cycles required for the fatigue crack initiation and the number required for the crack to propagate from the initial to the critical crack length based on Paris-Erdogan equation for Mode II fracture. All the above procedures are integrated into the reliability-based design optimization software RAMDO for design optimization and reliability analysis of wind turbine drivetrains under wind load and manufacturing uncertainties.A 750kW GRC wind turbine gearbox model is used to perform the design optimization and the reliability analysis. A deterministic design optimization (DDO) is performed first using an averaged joint PDF of wind load to ensure a 20-year service life. To this end, gear face width and tip relief (profile modification) are selected as design variables and optimized such that 20-year fatigue life is ensured while minimizing the total weight of drivetrains. It is important to notice here that an increase in face width leads to a decrease in the fatigue damage, but an increase in total weight. On the other hand, the tip relief has almost no effect on the total weight, but it has a major impact on the fatigue damage. It is shown in this study that the optimum tip relief allows for lowering the greatest maximum shear stresses on the tooth surface without relying heavily on face width widening to meet the 20-year fatigue life constraint and it leads to reduction of total drivetrain weight by 8.4%. However, if only face width is considered as design variable, total weight needs to be increased by 4.7% to meet the 20-year fatigue life constraint.Furthermore, the reliability analysis at the DDO optimum design is carried out considering the large spatiotemporal wind load uncertainty and gear manufacturing uncertainty. Local surrogate models at DDO optimum design are generated using Dynamic Kriging method in RAMDO software to evaluate the gear contact fatigue damage. 49.5% reliability is obtained at the DDO optimum design, indicating that the probability of failure is 50.5%, which is as expected for the DDO design. RBDO is, therefore, necessary to further improve the reliability of the wind turbine drivetrain.To this end, the sampling-based reliability analysis is carried out to evaluate the probability of failure for each design using the Monte Carlo Simulation (MCS) method. However, the use of a large number of MCS sample points leads to a large number of contact fatigue damage evaluation time using the 10-minute multibody drivetrain dynamics simulation, resulting in the RBDO calculation process being computational very intensive. In order to overcome the computational difficulty resulting from the use of high-fidelity wind turbine drivetrain dynamics simulation, intermediate surrogate models are created prior to the RBDO process using the Dynamic Kriging method in RAMDO and used throughout the entire RBDO iteration process. It is demonstrated that the RBDO optimum obtained ensures the target 97.725 % reliability (two sigma quality level) with only 1.4 % increase in the total weight from the baseline design with 8.3 % reliability. This result clearly indicates the importance of incorporating the tip relief as a design variable that prevents larger increase in the face width causing an increase in weight. This, however, does not mean that a larger tip relief is always preferred since an optimum tip relief amount depends on stochastic wind loads and an optimum tip relief cannot be found deterministically. Furthermore, accuracy of the RBDO optimum obtained using the intermediate surrogate models is verified by the reliability analysis at the RBDO optimum using the local surrogate models. It is demonstrated that the integrated design optimization procedure developed in this study enables the cost effective and reliable design of wind turbine drivetrains.
机译:本研究的目的是为风力涡轮机传动系统的确定性和基于可靠性的设计优化开发一个集成的多体动力学计算框架,以获得最佳的风力涡轮机齿轮设计,以确保在风载荷和齿轮制造不确定性下的目标可靠性。由于本质上是随机的可变风载荷,风力涡轮机传动系统中的齿轮承受严重的循环载荷。因此,据报道传动系统的故障率相对高于其他风力涡轮机部件。众所周知,在风能行业中,提高动力传动系统设计的可靠性是使风能与化石燃料相比具有竞争力的关键问题之一。此外,风力涡轮机是一个多物理场系统,涉及随机风载荷、转子叶片空气动力学、齿轮动力学、电磁发电机和控制系统。这使得对传动系统产品寿命的准确预测具有挑战性,并且关于设计优化的研究非常有限,包括考虑风载荷和制造不确定性的齿轮系统的基于可靠性的设计优化 (RBDO)。风载荷和齿轮制造不确定性下风力涡轮机传动系统的设计优化问题,本研究讨论了以下问题:(1)基于多变量表格开发用于复杂多体齿轮系统齿轮动力学仿真的有效数值程序接触搜索算法,以解决具有轮廓修改或表面缺陷的详细齿轮齿接触几何形状; (2) 使用 (1) 中开发的齿轮动力学仿真软件和 RAMDO 软件,通过结合宽时空风载荷不确定性模型、点蚀齿轮齿接触,开发用于确定性和基于可靠性的风力涡轮机传动系统设计优化的集成多体动力学计算框架疲劳模型,以及使用 NREL AeroDyn/FAST 的转子叶片空气动力学模型; (3) 风力涡轮机动力传动系统的确定性和基于可靠性的设计优化,以最大限度地减少动力传动系统的总重量,同时使用本研究中开发的数值程序确保 20 年的可靠使用寿命,风载荷和齿轮制造的不确定性。风荷载的不确定性,引入了 10 分钟平均风速 (V₁₀) 和 10 分钟湍流强度 (I₁₀) 的联合概率密度函数 (PDF) 用于风力涡轮机动力传动系统仿真。为了考虑广泛的风时空不确定性(即不同位置和不同年份的风荷载不确定性),考虑了V₁₀、I₁₀和copula的所有联合PDF参数的不确定性,并使用249组风数据识别每个参数的PDF .这种风不确定性模型允许在接触疲劳寿命预测中考虑范围广泛的概率风载荷。对于从随机风模型中获得的给定 V₁₀ 和 I₁₀,使用 NREL TurbSim 生成随机时域风速数据,然后输入到 NREL FAST 中进行转子叶片的空气动力学模拟,以预测传递的扭矩和速度作为输入发送到多体齿轮动力学仿真的传动系统主轴。为了预测齿轮接触疲劳寿命,需要一个考虑详细齿轮接触几何形状以及啮合刚度变化的高保真齿轮动力学仿真模型被开发以发现在风荷载不确定性下最大接触应力的变化。然而,这导致计算密集的过程。为了消除计算密集型迭代在线碰撞检测算法,提出了一种基于表格接触搜索算法的多体齿轮动力学仿真数值程序。在动力学模拟之前通过接触几何分析为一对齿轮齿廓生成查找接触表,并计算所有齿轮对满足非共形接触条件和每个接触点的啮合刚度的接触点在传动系统模型中。此过程允许以有效的方式检测齿轮齿接触,同时在啮合力评估中保留精确的接触几何形状和啮合刚度变化,从而导致适合设计优化的计算效率高的齿轮动力学模拟考虑风荷载不确定性的程序。此外,讨论了本研究中引入的啮合刚度模型的准确性和带齿尖后凸的齿轮齿的传动误差,并根据文献中提供的测试数据验证了使用该方法开发的风力涡轮机传动系统模型。齿轮接触疲劳寿命为基于轮齿点蚀疲劳临界预测eria 定义为疲劳裂纹萌生所需的应力循环次数与裂纹从初始扩​​展到临界裂纹长度所需的次数之和,基于模式 II 断裂的 Paris-Erdogan 方程。以上所有程序都集成到基于可靠性的设计优化软件RAMDO中,用于风载荷和制造不确定性下的风力发电机传动系统的设计优化和可靠性分析。 750kW GRC风力发电机齿轮箱模型用于进行设计优化和可靠性分析.首先使用风荷载的平均联合 PDF 执行确定性设计优化 (DDO),以确保 20 年的使用寿命。为此,选择齿轮面宽度和齿尖后隙(轮廓修正)作为设计变量并进行优化,以确保 20 年的疲劳寿命,同时最大限度地减少传动系统的总重量。这里需要注意的是,增加杆面宽度会导致疲劳损伤减少,但会增加总重量。另一方面,尖端的减轻对总重量几乎没有影响,但对疲劳损伤有重大影响。本研究表明,最佳齿尖后隙可以降低齿面上的最大最大剪切应力,而无需严重依赖齿宽加宽来满足 20 年疲劳寿命限制,并导致传动系统总重量减少 8.4 %。然而,如果仅考虑工作面宽度作为设计变量,则总重量需要增加4.7%才能满足20年疲劳寿命约束。此外,考虑大时空风荷载的DDO优化设计的可靠性分析不确定性和齿轮制造的不确定性。 DDO 优化设计的局部替代模型是使用 RAMDO 软件中的动态克里金法生成的,以评估齿轮接触疲劳损伤。 DDO 优化设计获得 49.5% 的可靠性,表明失效概率为 50.5%,符合 DDO 设计的预期。因此,RBDO 对于进一步提高风力涡轮机传动系统的可靠性是必要的。为此,进行了基于采样的可靠性分析,以使用蒙特卡罗模拟 (MCS) 方法评估每个设计的故障概率。然而,使用大量的 MCS 样本点导致使用 10 分钟多体传动系统动力学模拟的大量接触疲劳损伤评估时间,导致 RBDO 计算过程的计算量非常大。为了克服因使用高保真风力涡轮机传动系统动力学模拟而导致的计算困难,在 RBDO 过程之前使用 RAMDO 中的动态克里金法创建了中间代理模型,并在整个 RBDO 迭代过程中使用。结果表明,获得的 RBDO 优化确保了目标 97.725% 的可靠性(2 西格玛质量水平),而总重量仅比基线设计增加了 1.4%,可靠性为 8.3%。这个结果清楚地表明了将尖端后隙作为一个设计变量的重要性,它可以防止杆面宽度的更大增加导致重量的增加。然而,这并不意味着较大的叶尖卸荷总是首选,因为最佳叶尖卸荷量取决于随机风载荷,并且无法确定性地找到最佳叶尖卸荷。此外,使用中间代理模型获得的 RBDO 最优值的准确性通过使用局部代理模型的 RBDO 最优值的可靠性分析得到验证。结果表明,本研究中开发的集成设计优化程序能够实现风力涡轮机传动系统的成本效益和可靠设计。

著录项

  • 作者

    Huaxia Li;

  • 作者单位
  • 年度 -1
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号