We are concerned with an $M/M$-type join the shortest queue ($M/M$-JSQ forshort) with $k$ parallel queues for an arbitrary positive integer $k$, wherethe servers may be heterogeneous. We are interested in the tail asymptotic ofthe stationary distribution of this queueing model, provided the system isstable. We prove that this asymptotic for the minimum queue length is exactlygeometric, and its decay rate is the $k$-th power of the traffic intensity ofthe corresponding $k$ server queues with a single waiting line. For this, weuse two formulations, a quasi-birth-and-death (QBD for short) process and areflecting random walk on the boundary of the $k+1$-dimensional orthant. TheQBD process is typically used in the literature for studying the JSQ with 2parallel queues, but the random walk also plays a key roll in our arguments,which enables us to use the existing results on tail asymptotics for the QBDprocess.
展开▼
机译:我们关注$ M / M $ -Type加入最短的队列($ M / M $ -JSQ forshshort),以$ K $ Spaction队列为任意积极整数$ k $,而服务器可能是异构的。我们对该排队模型的静止分布的尾部渐近感兴趣,只要系统是可靠的。我们证明,这种渐近的最小队列长度完全是距离格子测量,其衰减率是具有单个等待行的相应$ k $服务器队列的交通强度的$ k $。为此,瑞利的两种配方,准出生和死亡(短暂的QBD)过程,并在$ k + 1 $ -dimimensional裸露的边界上呈随机行走。 QBD进程通常用于研究JSQ的文献中,其中包含2个队列的JSQ,但随机散步也在我们的参数中播放了一个关键滚动,这使我们能够在QBDProcess上使用现有的结果对尾部渐近的结果。
展开▼