首页> 外文期刊>Queueing systems >Join the shortest queue among k parallel queues: tail asymptotics of its stationary distribution
【24h】

Join the shortest queue among k parallel queues: tail asymptotics of its stationary distribution

机译:加入k个并行队列中最短的队列:其平稳分布的尾部渐近性

获取原文
获取原文并翻译 | 示例

摘要

We are concerned with an M/M-type join the shortest queue (M/M-JSQ for short) with k parallel queues for an arbitrary positive integer k, where the servers may be heterogeneous. We are interested in the tail asymptotic of the stationary distribution of this queueing model, provided the system is stable. We prove that this asymptotic for the minimum queue length is exactly geometric, and its decay rate is the kth power of the traffic intensity of the corresponding k server queues with a single waiting line. For this, we use two formulations, a quasi-birth-and-death (QBD for short) process and a reflecting random walk on the boundary of the k +1-dimensional orthant. The QBD process is typically used in the literature for studying the JSQ with two parallel queues, but the random walk also plays a key roll in our arguments, which enables us to use the existing results on tail asymptotics for the QBD process.
机译:我们关心的是M / M类型连接最短队列(简称M / M-JSQ),其中k个并行队列的任意正整数k,其中服务器可能是异构的。只要系统稳定,我们就对该排队模型的平稳分布的尾部渐近感兴趣。我们证明了最小队列长度的这种渐进性是完全几何的,并且其衰减率是具有单个等待线的相应k个服务器队列的通信强度的k次方。为此,我们使用两种公式,准生与死(简称QBD)过程和在k +1维矫正器边界上的反射随机游走。在文献中通常使用QBD过程来研究带有两个并行队列的JSQ,但是随机游走在我们的论点中也起着关键作用,这使我们能够将现有的关于QBD过程的尾部渐近结果使用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号