首页> 外文OA文献 >Proof of the 1-factorization and Hamilton Decomposition Conjectures
【2h】

Proof of the 1-factorization and Hamilton Decomposition Conjectures

机译:$ 1 $ - 因子化和Hamilton分解猜想的证明

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we prove the following results (via a unified approach) for allsufficiently large $n$: (i) [$1$-factorization conjecture] Suppose that $n$ is even and $Dgeq2lceil n/4ceil -1$. Then every $D$-regular graph $G$ on $n$ vertices has adecomposition into perfect matchings. Equivalently, $chi'(G)=D$. (ii) [Hamilton decomposition conjecture] Suppose that $D ge lfloor n/2floor $. Then every $D$-regular graph $G$ on $n$ vertices has a decompositioninto Hamilton cycles and at most one perfect matching. (iii) [Optimal packings of Hamilton cycles] Suppose that $G$ is a graph on$n$ vertices with minimum degree $deltage n/2$. Then $G$ contains at least${m reg}_{m even}(n,delta)/2 ge (n-2)/8$ edge-disjoint Hamilton cycles.Here $ext{reg}_{ext{even}}(n,delta)$ denotes the degree of the largesteven-regular spanning subgraph one can guarantee in a graph on $n$ verticeswith minimum degree $delta$. (i) was first explicitly stated by Chetwynd and Hilton. (ii) and the specialcase $delta= lceil n/2 ceil$ of (iii) answer questions of Nash-Williamsfrom 1970. All of the above bounds are best possible.
机译:在本文中,我们针对所有足够大的$ n $证明了以下结果(通过统一方法):(i)[$ 1 $-因式分解猜想]假设$ n $是偶数,而$ D geq2 lceil n / 4 rceil -1 $。然后,在$ n $顶点上的每个$ D $-正则图$ G $都会分解为完美的匹配。等效地,$ chi'(G)= D $。 (ii)[哈密尔顿分解猜想]假设$ D ge lfloor n / 2 rfloor $。然后,在$ n $个顶点上的每个$ D $-正则图$ G $都有分解为汉密尔顿循环,并且最多有一个完美的匹配。 (iii)[汉密尔顿循环的最佳堆积]假设$ G $是最小度为$ delta ge n / 2 $的$ n $个顶点的图。然后$ G $至少包含$ { rm reg} _ { rm even}(n, delta)/ 2 ge(n-2)/ 8 $个边缘不相交的汉密尔顿循环。这里$ text {reg} _ { text {even}}(n, delta)$表示一个人可以在图中最小度为$ delta $的$ n $个顶点上保证的最大偶数正则跨度子图的程度。 (i)由Chetwynd和Hilton首先明确声明。 (ii)和(iii)的特例$ delta = lceil n / 2 rceil $回答了1970年以来的Nash-Williams问题。以上所有界限都是最好的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号