首页> 外文OA文献 >Improved Lossy Image Compression with Priming and Spatially Adaptive Bit Rates for Recurrent Networks
【2h】

Improved Lossy Image Compression with Priming and Spatially Adaptive Bit Rates for Recurrent Networks

机译:利用启动和空间自适应比特改进有损图像压缩  经常性网络的费率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a method for lossy image compression based on recurrent,convolutional neural networks that outperforms BPG (4:2:0 ), WebP, JPEG2000,and JPEG as measured by MS-SSIM. We introduce three improvements over previousresearch that lead to this state-of-the-art result. First, we show thattraining with a pixel-wise loss weighted by SSIM increases reconstructionquality according to several metrics. Second, we modify the recurrentarchitecture to improve spatial diffusion, which allows the network to moreeffectively capture and propagate image information through the network'shidden state. Finally, in addition to lossless entropy coding, we use aspatially adaptive bit allocation algorithm to more efficiently use the limitednumber of bits to encode visually complex image regions. We evaluate our methodon the Kodak and Tecnick image sets and compare against standard codecs as wellrecently published methods based on deep neural networks.
机译:我们提出了一种基于经常性的卷积神经网络的有损图像压缩方法,该网络压缩优于由MS-SSSIM测量的BPG(4:2:0),WEPP,JPEG2000和JPEG来表达BPG(4:2:0)。我们介绍了三次改进,以导致这种最先进的结果。首先,我们展示随着SSIM加权的像素明智的损失,根据几个度量来增加重建。其次,我们修改重复校验结构以改善空间扩散,这允许网络通过网络的孤独状态融入并传播图像信息。最后,除了无损熵编码之外,我们使用现有的自适应比特分配算法来更有效地使用数量的比特来编码视觉上复杂的图像区域。我们评估我们的方法柯达和Tecnick图像集,并与标准编解码器相比,作为基于深神经网络的完整发布的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号