首页> 外文会议>IEEE/CVF Conference on Computer Vision and Pattern Recognition >Improved Lossy Image Compression with Priming and Spatially Adaptive Bit Rates for Recurrent Networks
【24h】

Improved Lossy Image Compression with Priming and Spatially Adaptive Bit Rates for Recurrent Networks

机译:面向递归网络的具有启动和空间自适应位速率的改进的有损图像压缩

获取原文

摘要

We propose a method for lossy image compression based on recurrent, convolutional neural networks that outperforms BPG (4:2:0), WebP, JPEG2000, and JPEG as measured by MS-SSIM. We introduce three improvements over previous research that lead to this state-of-the-art result using a single model. First, we modify the recurrent architecture to improve spatial diffusion, which allows the network to more effectively capture and propagate image information through the network's hidden state. Second, in addition to lossless entropy coding, we use a spatially adaptive bit allocation algorithm to more efficiently use the limited number of bits to encode visually complex image regions. Finally, we show that training with a pixel-wise loss weighted by SSIM increases reconstruction quality according to multiple metrics. We evaluate our method on the Kodak and Tecnick image sets and compare against standard codecs as well as recently published methods based on deep neural networks.
机译:我们提出了一种基于递归卷积神经网络的有损图像压缩方法,该方法优于MS-SSIM测量的BPG(4:2:0),WebP,JPEG2000和JPEG。我们介绍了对先前研究的三项改进,这些改进使用单个模型得出了最新的结果。首先,我们修改循环架构以改善空间扩散,这使网络可以更有效地捕获和传播通过网络隐藏状态的图像信息。其次,除了无损熵编码外,我们还使用空间自适应位分配算法来更有效地使用有限数量的位来编码视觉复杂的图像区域。最后,我们证明了使用SSIM加权的像素损失进行训练可以根据多个指标提高重建质量。我们在Kodak和Tecnick影像集上评估我们的方法,并与标准编解码器以及基于深度神经网络的最新发布方法进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号