首页> 外文OA文献 >Multi-Objective Optimized Fuzzy Clustering for Detecting Cell Clusters from Single-Cell Expression Profiles
【2h】

Multi-Objective Optimized Fuzzy Clustering for Detecting Cell Clusters from Single-Cell Expression Profiles

机译:单电池表达谱检测细胞簇的多目标优化模糊聚类

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Rapid advance in single-cell RNA sequencing (scRNA-seq) allows measurement of the expression of genes at single-cell resolution in complex disease or tissue. While many methods have been developed to detect cell clusters from the scRNA-seq data, this task currently remains a main challenge. We proposed a multi-objective optimization-based fuzzy clustering approach for detecting cell clusters from scRNA-seq data. First, we conducted initial filtering and SCnorm normalization. We considered various case studies by selecting different cluster numbers ( c l = 2 to a user-defined number), and applied fuzzy c-means clustering algorithm individually. From each case, we evaluated the scores of four cluster validity index measures, Partition Entropy ( P E ), Partition Coefficient ( P C ), Modified Partition Coefficient ( M P C ), and Fuzzy Silhouette Index ( F S I ). Next, we set the first measure as minimization objective (↓) and the remaining three as maximization objectives (↑), and then applied a multi-objective decision-making technique, TOPSIS, to identify the best optimal solution. The best optimal solution (case study) that had the highest TOPSIS score was selected as the final optimal clustering. Finally, we obtained differentially expressed genes (DEGs) using Limma through the comparison of expression of the samples between each resultant cluster and the remaining clusters. We applied our approach to a scRNA-seq dataset for the rare intestinal cell type in mice [GEO ID: GSE62270, 23,630 features (genes) and 288 cells]. The optimal cluster result (TOPSIS optimal score= 0.858) comprised two clusters, one with 115 cells and the other 91 cells. The evaluated scores of the four cluster validity indices, F S I , P E , P C , and M P C for the optimized fuzzy clustering were 0.482, 0.578, 0.607, and 0.215, respectively. The Limma analysis identified 1240 DEGs (cluster 1 vs. cluster 2). The top ten gene markers were Rps21, Slc5a1, Crip1, Rpl15, Rpl3, Rpl27a, Khk, Rps3a1, Aldob and Rps17. In this list, Khk (encoding ketohexokinase) is a novel marker for the rare intestinal cell type. In summary, this method is useful to detect cell clusters from scRNA-seq data.
机译:单细胞RNA测序(ScRNA-SEQ)的快速提前允许在复杂疾病或组织中的单细胞分辨率下测量基因的表达。虽然已经开发了许多方法来检测来自SCRNA-SEQ数据的细胞集群,但这项任务目前仍然是一个主要挑战。我们提出了一种基于多目标优化的模糊聚类方法,用于检测来自SCRNA-SEQ数据的细胞簇。首先,我们进行了初始过滤和扫描标准化。我们通过选择不同的簇数(C L = 2至用户定义的数字)和单独应用模糊C-Meanse聚类算法来考虑各种案例研究。从每种情况下,我们评估了四个集群有效性指标测量,分区熵(P e),分区系数(p c),修改分区系数(m p c)和模糊轮廓索引(f s i)的分数。接下来,我们将第一个措施设置为最小化目标(↓),其余三个作为最大化目标(↑),然后应用了多目标决策技术,顶部,以识别最佳最佳解决方案。选择了最高的TopSIS得分的最佳解决方案(案例研究)作为最终最佳聚类。最后,我们通过比较每个所得簇与剩余簇之间的样品的表达比较来获得差异表达基因(DEGS)。我们将我们的方法应用于小鼠稀有肠细胞类型的SCRNA-SEQ数据集[GEO ID:GSE62270,23,630特征(基因)和288个细胞]。最佳群集结果(Topsis最佳分数= 0.858)包括两个簇,一个有115个细胞和其他91个细胞。用于优化模糊聚类的四个集群有效性指数,F S,P E,P C和M P C的评估得分分别为0.482,0.578,0.607和0.215。 LiMMA分析识别1240°(群集1与群集2)。前十个基因标记为RPS21,SLC5A1,CRIP1,RPL15,RPL3,RPL27A,KHK,RPS3A1,ALDOB和RPS17。在该列表中,KHK(编码酮酮酶)是稀有肠道细胞类型的新型标记。总之,该方法可用于检测来自ScrNA-SEQ数据的细胞簇。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号