首页> 外文OA文献 >Q-learning-based dynamic joint control of interference and transmission opportunities for cognitive radio
【2h】

Q-learning-based dynamic joint control of interference and transmission opportunities for cognitive radio

机译:基于Q学习的动态联合控制认知无线电的干扰和传输机会

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract In cognitive radio (CR) system, secondary user (SU) should use available channels opportunistically when the primary user (PU) does not exist. In CR network, SUs have to detect the PU signal with sufficient sensing time to guarantee the detection probability and minimize the interference to the PU, while the CR system should have enough data transmission time to maximize the transmission opportunity of the SU. Therefore, the sensing time and data transmission time of the SU are generally considered as main optimization parameters to maximize the throughput of the CR system. In this paper, a separate sensing node is designated and the sensing is continuously performed using the interference alignment (IA) technique. In this paper, the designated sensing node estimates the interference ratio and transmission opportunity loss ratio. To satisfy the primary user’s interference requirement and maximize secondary throughput, we proposed dynamic adjustment mechanism for sensing slot time and sensing report interval using reinforcement learning in time-varying communication environment. The experimental results show that the proposed approach can minimize the interference on PU and enhance the transmission opportunity of SUs.
机译:摘要在认知无线电(CR)系统中,辅助用户(SU)应在主用户(PU)不存在时机会使用可用频道。在CR网络中,SUS必须检测具有足够的感测时间的PU信号,以保证检测概率并最小化对PU的干扰,而CR系统应该具有足够的数据传输时间以最大化SU的传输机会以最大化SU的传输机会。因此,SU的感测时间和数据传输时间通常被认为是主要优化参数,以最大化CR系统的吞吐量。在本文中,指定了单独的传感节点,并且使用干扰对准(IA)技术连续地进行感测。在本文中,指定的传感节点估计干扰比和传输机会损失比。为了满足主要用户的干扰要求和最大化二次吞吐量,我们提出了用于在时变通信环境中使用加强学习的时隙时间和感测报告间隔的动态调整机制。实验结果表明,该方法可以最大限度地减少PU的干扰,增强SUS的传输机会。

著录项

  • 作者

    Sung-Jeen Jang; Sang-Jo Yoo;

  • 作者单位
  • 年度 2018
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号