首页> 外文期刊>IEEE Transactions on Cognitive Communications and Networking >Q-Learning-Based Spectrum Access for Multimedia Transmission Over Cognitive Radio Networks
【24h】

Q-Learning-Based Spectrum Access for Multimedia Transmission Over Cognitive Radio Networks

机译:基于Q学习的频谱访问,用于多媒体传输通过认知无线电网络

获取原文
获取原文并翻译 | 示例

摘要

In order to meet the dramatic wireless bandwidth demands of emerging multimedia applications, cognitive radio has been proposed as one of promising solutions to improve the spectrum efficiency. This article aims at pursuing high spectrum efficiency via accessing the idle spectrum intelligently without information exchange among users. Different from infrastructure-based wireless networks, users in cognitive radio networks tend to compete with each other to access limited idle spectrum, thus leading to a dynamically heterogeneous radio environment. In this article, a Q-learning based spectrum access scheme is proposed to adaptively allocate multimedia data over multiple idle spectrum holes. Taking into consideration the rigorous delay and throughput performance requirements of multimedia applications, we integrate these two indicators into the definition of reward function in the proposed Q-learning algorithm. The simulation results show that the proposed scheme can quickly converge to a stable state in terms of throughput, power efficiency, and collision probability. Furthermore, the proposed learning rate adjustment strategy makes the performance of the spectrum access algorithm converge the quickest and only consumes 78% time to achieve the targeted collision probability, i.e., 0.1, compared with two other typical parameter adjustment strategies.
机译:为了满足新兴多媒体应用的戏剧性无线带宽需求,已经提出了认知无线电作为提高频谱效率的有希望的解决方案之一。本文旨在通过用户之间的信息交换,通过访问空闲光谱,旨在追求高频频率。不同于基于基础设施的无线网络,认知无线电网络中的用户倾向于彼此竞争以访问有限的空闲光谱,从而导致动态异构的无线电环境。在本文中,提出了一种基于Q学习的频谱访问方案,以通过多个空闲频谱孔自适应地分配多媒体数据。考虑到多媒体应用的严格延迟和吞吐量性能要求,我们将这两个指标集成到提议的Q学习算法中的奖励函数的定义中。仿真结果表明,在吞吐量,功率效率和碰撞概率方面,所提出的方案可以快速收敛到稳定状态。此外,所提出的学习速率调整策略使得频谱接入算法的性能会聚最快,并且仅消耗78%的时间来实现目标碰撞概率,即0.1,与另外两种典型的参数调整策略相比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号