首页> 外文OA文献 >Online process monitoring and fault-detection approach based on adaptive neighborhood preserving embedding
【2h】

Online process monitoring and fault-detection approach based on adaptive neighborhood preserving embedding

机译:基于自适应邻域保留嵌入的在线过程监测与故障检测方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This study aims to solve the problem involving the high false alarm rate experienced during the detection process when using the traditional multivariate statistical process monitoring method. In addition, the existing model cannot be updated according to the actual situation. This article proposes a novel adaptive neighborhood preserving embedding algorithm as well as an online fault-detection approach based on adaptive neighborhood preserving embedding. This approach combines the approximate linear dependence condition with neighborhood preserving embedding. According to the newly proposed update strategy, the algorithm can achieve an adaptive update model that realizes the online fault detection of processes. The effectiveness and feasibility of the proposed approach are verified by experiments of the Tennessee Eastman process. Theoretical analysis and application experiment of Tennessee Eastman process demonstrate that in this article proposed fault-detection method based on adaptive neighborhood preserving embedding can effectively reduce the false alarm rate and improve the fault-detection performance.
机译:本研究旨在解决在使用传统多元统计过程监测方法时检测过程中经历的高误报率的问题。此外,还无法根据实际情况更新现有模型。本文提出了一种新颖的自适应邻域保留嵌入算法以及基于适应邻域嵌入的在线故障检测方法。这种方法将近似线性依赖条件与邻域保留嵌入的近似线性依赖条件结合起来。根据新提出的更新策略,该算法可以实现一种自适应更新模型,实现过程的在线故障检测。通过田纳西州伊斯特曼进程的实验验证了拟议方法的有效性和可行性。田纳西州伊斯特曼进程的理论分析和应用实验证明,在本文中,提出了基于自适应街区保留嵌入的故障检测方法可以有效地降低误报率并提高故障检测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号