This study aims to solve the problem involving the high false alarm rate experienced during the detection process when using the traditional multivariate statistical process monitoring method. In addition, the existing model cannot be updated according to the actual situation. This article proposes a novel adaptive neighborhood preserving embedding algorithm as well as an online fault-detection approach based on adaptive neighborhood preserving embedding. This approach combines the approximate linear dependence condition with neighborhood preserving embedding. According to the newly proposed update strategy, the algorithm can achieve an adaptive update model that realizes the online fault detection of processes. The effectiveness and feasibility of the proposed approach are verified by experiments of the Tennessee Eastman process. Theoretical analysis and application experiment of Tennessee Eastman process demonstrate that in this article proposed fault-detection method based on adaptive neighborhood preserving embedding can effectively reduce the false alarm rate and improve the fault-detection performance.
展开▼