首页> 外文OA文献 >Safety Risk Monitoring of Cyber-Physical Power Systems Based on Ensemble Learning Algorithm
【2h】

Safety Risk Monitoring of Cyber-Physical Power Systems Based on Ensemble Learning Algorithm

机译:基于集合学习算法的网络物理电力系统安全风险监测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The traditional security risk monitoring technology cannot adapt to cyber-physical power systems (CPPS) concerning evaluation criteria, real-time monitoring, and technical reliability. The aim of this paper is to propose and implement a log analysis architecture for CPPS to detect the log anomalies, which introduces the distributed streaming processing mechanism. The processing mechanism can train the network protocol feature database precisely over the big data platform, which improves the efficiency of the network in terms of log anomaly detection. Moreover, we propose an ensemble prediction algorithm based on time series (EPABT) considering the characteristics of the statistical log analysis to predict abnormal features during the network traffic analysis. We then present a new asymmetric error cost (AEC) evaluation criterion to meet the characteristics of CPPS. The experimental results demonstrate that the EPABT provides an efficient tool for detecting the accuracy and reliability of abnormal situation prediction as compared with the several state-of-the-art algorithms. Meanwhile, the AEC can effectively evaluate the differences in the cost between the high and low prediction results. To the best of our knowledge, these two algorithms provide strong support for the practical application of power industrial network security risk monitoring.
机译:传统的安全风险监测技术不能适应网络 - 物理电力系统(CPP)关于评估标准,实时监控和技术可靠性。本文的目的是提出并实施用于CPP的日志分析架构,以检测对日志异常,这引入了分布式流处理机制。处理机制可以在大数据平台上精确地训练网络协议功能数据库,从而提高了对日志异常检测的网络的效率。此外,考虑到统计日志分析的特征,提出了一种基于时间序列(EPABT)的集合预测算法,以预测网络流量分析期间的异常特征。然后,我们提出了一种新的非对称误差成本(AEC)评估标准,以满足CPP的特征。实验结果表明,与几种最先进的算法相比,EPABT提供了一种用于检测异常情况预测的准确性和可靠性的有效工具。同时,AEC可以有效地评估高预测结果之间成本的差异。据我们所知,这两种算法为电力工​​业网络安全风险监测的实际应用提供了强大的支持。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号