首页> 外文OA文献 >Developing an Explainable Machine Learning-Based Personalised Dementia Risk Prediction Model: A Transfer Learning Approach With Ensemble Learning Algorithms
【2h】

Developing an Explainable Machine Learning-Based Personalised Dementia Risk Prediction Model: A Transfer Learning Approach With Ensemble Learning Algorithms

机译:开发可解释的基于机器学习的个性化痴呆风险预测模型:具有集合学习算法的转移学习方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Alzheimer's disease (AD) has its onset many decades before dementia develops, and work is ongoing to characterise individuals at risk of decline on the basis of early detection through biomarker and cognitive testing as well as the presence/absence of identified risk factors. Risk prediction models for AD based on various computational approaches, including machine learning, are being developed with promising results. However, these approaches have been criticised as they are unable to generalise due to over-reliance on one data source, poor internal and external validations, and lack of understanding of prediction models, thereby limiting the clinical utility of these prediction models. We propose a framework that employs a transfer-learning paradigm with ensemble learning algorithms to develop explainable personalised risk prediction models for dementia. Our prediction models, known as source models, are initially trained and tested using a publicly available dataset (n = 84,856, mean age = 69 years) with 14 years of follow-up samples to predict the individual risk of developing dementia. The decision boundaries of the best source model are further updated by using an alternative dataset from a different and much younger population (n = 473, mean age = 52 years) to obtain an additional prediction model known as the target model. We further apply the SHapely Additive exPlanation (SHAP) algorithm to visualise the risk factors responsible for the prediction at both population and individual levels. The best source model achieves a geometric accuracy of 87%, specificity of 99%, and sensitivity of 76%. In comparison to a baseline model, our target model achieves better performance across several performance metrics, within an increase in geometric accuracy of 16.9%, specificity of 2.7%, and sensitivity of 19.1%, an area under the receiver operating curve (AUROC) of 11% and a transfer learning efficacy rate of 20.6%. The strength of our approach is the large sample size used in training the source model, transferring and applying the “knowledge” to another dataset from a different and undiagnosed population for the early detection and prediction of dementia risk, and the ability to visualise the interaction of the risk factors that drive the prediction. This approach has direct clinical utility.
机译:阿尔茨海默病(AD)在痴呆症发展前几十年前发病了,并且工作正在进行以通过生物标志物和认知测试的早期检测的基础上的危险的危险性的特征,以及确定/没有确定的危险因素的存在/不存在。基于各种计算方法,包括机器学习的广告风险预测模型正在通过有前途的结果开发。然而,这些方法被批评,因为由于过度依赖于一个数据源,内部和外部验证差,以及对预测模型的理解缺乏了解,因此限制了这些预测模型的临床效用。我们提出了一个框架,该框架采用与集合学习算法的转移学习范例,以开发用于痴呆症的可解释的个性化风险预测模型。我们的预测模型,称为源模型,最初使用公共数据集(n = 84,856,平均年龄= 69岁)培训和测试,具有14年的后续样本,以预测发育痴呆的个体风险。通过使用不同且小于更年轻的群体(n = 473,平均年龄= 52岁)的替代数据集来进一步更新最佳源模型的决策边界,以获得称为目标模型的附加预测模型。我们进一步应用了匀称的附加解释(Shap)算法,以可视化负责人口和个人级别的预测的风险因素。最佳源模型实现了87%,特异性为99%的几何精度,灵敏度为76%。与基线模型相比,我们的目标模型在几何性能度量上实现了更好的性能,在几何精度的增加,16.9%,特异性为2.7%,灵敏度为19.1%,接收器操作曲线下的区域(Auroc) 11%和转移学习疗效率为20.6%。我们的方法的强度是训练源模型的大型样本大小,从不同和未确诊的人口转移和将“知识”转移和应用于其他数据集,以便早期检测和预测痴呆症风险,以及可视化互动的能力推动预测的危险因素。这种方法具有直接的临床效用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号