首页> 外文OA文献 >Image De-Raining Using a Conditional Generative Adversarial Network
【2h】

Image De-Raining Using a Conditional Generative Adversarial Network

机译:使用条件生成对抗网络进行图像下雨

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Severe weather conditions such as rain and snow adversely affect the visualquality of images captured under such conditions thus rendering them uselessfor further usage and sharing. In addition, such degraded images drasticallyaffect performance of vision systems. Hence, it is important to solve theproblem of single image de-raining/de-snowing. However, this is a difficultproblem to solve due to its inherent ill-posed nature. Existing approachesattempt to introduce prior information to convert it into a well-posed problem.In this paper, we investigate a new point of view in addressing the singleimage de-raining problem. Instead of focusing only on deciding what is a goodprior or a good framework to achieve good quantitative and qualitativeperformance, we also ensure that the de-rained image itself does not degradethe performance of a given computer vision algorithm such as detection andclassification. In other words, the de-rained result should beindistinguishable from its corresponding clear image to a given discriminator.This criterion can be directly incorporated into the optimization framework byusing the recently introduced conditional generative adversarial networks(GANs). To minimize artifacts introduced by GANs and ensure better visualquality, a new refined loss function is introduced. Based on this, we propose anovel single image de-raining method called Image De-raining ConditionalGeneral Adversarial Network (ID-CGAN), which considers quantitative, visual andalso discriminative performance into the objective function. Experimentsevaluated on synthetic images and real images show that the proposed methodoutperforms many recent state-of-the-art single image de-raining methods interms of quantitative and visual performance.
机译:严重的天气条件如雨雪和雪地不利地影响在这种条件下捕获的图像的位于质量,从而使他们无用的进一步使用和共享。此外,这种降级的图像令人衰老的视觉系统的性能。因此,解决单一图像下雨/降雪的问题是重要的。然而,由于其固有的不良性质,这是一个困难的问题。现有方法介绍先前信息,将其转换为一个完整的问题。在本文中,我们调查了解决单模下雨问题的新观点。而不是专注于决定成熟或良好的框架来实现良好的定量和定性,而是确保降下的图像本身不会降解给定计算机视觉算法的性能,例如检测和Classification。换句话说,应从其对应的清除图像中解开下降雨结果到给定的判别符号。这可以直接纳入优化框架中,通过避免最近引入的条件生成的对抗网络(GAN)。为了最大限度地减少GAN引入的工件并确保更好的静脉排列,引入了新的精细损失功能。基于这一点,我们提出了一种称为图像下雨条件的Anovel单图像降雨方法,其认为定量,视觉Andalso鉴别性能进入客观函数。在合成图像和真实图像上进行实验,表明,所提出的方法特征性许多最近最先进的单一图像下降方法的定量和视觉性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号