首页> 外文期刊>Circuits and Systems for Video Technology, IEEE Transactions on >Image De-Raining Using a Conditional Generative Adversarial Network
【24h】

Image De-Raining Using a Conditional Generative Adversarial Network

机译:使用条件生成对抗网络进行图像下雨

获取原文
获取原文并翻译 | 示例

摘要

Severe weather conditions, such as rain and snow, adversely affect the visual quality of images captured under such conditions, thus rendering them useless for further usage and sharing. In addition, such degraded images drastically affect the performance of vision systems. Hence, it is important to address the problem of single image de-raining. However, the inherent ill-posed nature of the problem presents several challenges. We attempt to leverage powerful generative modeling capabilities of the recently introduced conditional generative adversarial networks (CGAN) by enforcing an additional constraint that the de-rained image must be indistinguishable from its corresponding ground truth clean image. The adversarial loss from GAN provides additional regularization and helps to achieve superior results. In addition to presenting a new approach to de-rain images, we introduce a new refined loss function and architectural novelties in the generator–discriminator pair for achieving improved results. The loss function is aimed at reducing artifacts introduced by GANs and ensure better visual quality. The generator sub-network is constructed using the recently introduced densely connected networks, whereas the discriminator is designed to leverage global and local information to decide if an image is real/fake. Based on this, we propose a novel single image de-raining method called image de-raining conditional generative adversarial network (ID-CGAN) that considers quantitative, visual, and also discriminative performance into the objective function. The experiments evaluated on synthetic and real images show that the proposed method outperforms many recent state-of-the-art single image de-raining methods in terms of quantitative and visual performances. Furthermore, the experimental results evaluated on object detection datasets using the Faster-RCNN also demonstrate the effectiveness of proposed method in improving the detection performance on images degraded by rain.
机译:恶劣的天气条件,如雨雪,对这种条件下捕获的图像的视觉质量产生不利影响,从而使他们无用的进一步使用和共享。此外,这种降级的图像显着影响了视觉系统的性能。因此,解决单一图像降雨的问题是很重要的。然而,这个问题的固有不良性质存在了几个挑战。我们试图利用最近引入的条件生成的对冲网络(Cgan)的强大的生成建模能力通过实施额外的约束,即不受影响的图像必须与其相应的地面真理清洁图像无法区分。 GaN的对抗性损失提供了额外的正规化,并有助于实现卓越的结果。除了呈现一种新的脱雨图像的方法外,我们还在发电机鉴别器对中引入了一种新的精致损失功能和建筑Novelti,以实现改进的结果。损失函数旨在减少由GAN引入的伪影,并确保更好的视觉质量。使用最近引入的密集连接网络构造发电机子网络,而鉴别器旨在利用全局和本地信息来决定图像是否是真实/假的。基于此,我们提出了一种新颖的单一图像下雨方法,称为图像下雨条件生成的对抗网络(ID-Cgan),其考虑定量,视觉和也是辨别性能的目标函数。在合成和真实图像上评估的实验表明,在定量和视觉性能方面,所提出的方法优于最近最近的最新单一图像下降方法。此外,使用FAST RCNN对物体检测数据集进行的实验结果还展示了所提出的方法在提高图像上降解的图像的检测性能的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号