首页> 外文OA文献 >Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference
【2h】

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference

机译:神经网络的量化与训练高效整数算术推断

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The rising popularity of intelligent mobile devices and the dauntingcomputational cost of deep learning-based models call for efficient andaccurate on-device inference schemes. We propose a quantization scheme thatallows inference to be carried out using integer-only arithmetic, which can beimplemented more efficiently than floating point inference on commonlyavailable integer-only hardware. We also co-design a training procedure topreserve end-to-end model accuracy post quantization. As a result, the proposedquantization scheme improves the tradeoff between accuracy and on-devicelatency. The improvements are significant even on MobileNets, a model familyknown for run-time efficiency, and are demonstrated in ImageNet classificationand COCO detection on popular CPUs.
机译:智能移动设备的普及和基于深度学习的模型的令人生畏的推出成本呼叫高效和准确的设备推理方案。我们提出了一种量化方案,可以使用仅限整数算术来执行推断的量化方案,该算法可以比浮点推断更有效地对普遍的整数整数硬件进行更有效。我们还共同设计了培训程序TOPRESERVE端到端模型精度后的量化。因此,PropedQualization方案改善了准确性和脱位之间的权衡。即使在移动时间效率的模型小册子上,也是显着的,即用于运行时效率的模型小,并且在Imagenet分类和Coco对流行的CPU上进行了证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号