首页> 外文OA文献 >Travelling fronts, pulses, and pulse trains in a 1D discrete reaction–diffusion system
【2h】

Travelling fronts, pulses, and pulse trains in a 1D discrete reaction–diffusion system

机译:在1D离散反作用 - 扩散系统中行驶前部,脉冲和脉冲列车

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We follow up an earlier work (briefly reviewed below) to investigate thetemporal stability of an exact travelling front solution, constructed in theform of an integral expression, for a one-dimensional discrete Nagumo-likemodel without recovery. Since the model is a piecewise linear one with anon-site reaction function involving a Heaviside step function, astraightforward linearisation around the front solution presents problems, andwe follow an alternative approach in estimating a `stability multiplier' bylooking at the variational problem as a succession of linear evolution of theperturbations, punctuated with `kicks' of small but finite duration. Theperturbations get damped during the linear evolution, while the kicks amplifyonly the perturbations located at specific sites (the `significantperturbations', see below) with reference to the propagating front. Comparisonis made with results of numerical integration of the reaction-diffusion systemwhereby it appears likely that the travelling front is temporally stable forall parameter values characterising the model for which it exists. We modifythe system by introducing a slow variation of a relevant recovery parameter andperform a leading order singular perturbation analysis to construct a pulsesolution in the resulting model. In addition, we obtain (in the leading order)a 1-parameter family of periodic pulse trains for the system, modellingre-entrant pulses in a one-dimensional ring of excitable cells.
机译:我们跟进了较早的工作(在下面简要回顾),以精确积分形式构造一维离散Nagumo样模型而没有恢复的精确行进前沿解的时间稳定性。由于该模型是分段线性模型,具有涉及Heaviside阶跃函数的非现场反应函数,因此前解决方案周围的直接线性化提出了问题,并且我们通过将变分问题看作是一系列的连续问题,采用了另一种方法来估计“稳定性乘数”。摄动的线性演变,以很小但持续时间有限的“踢”为标志。在线性演化过程中,扰动会衰减,而踢动会相对于传播前沿仅放大位于特定位置的扰动(“显着扰动”,请参见下文)。用反应扩散系统的数值积分结果进行比较,由此对于可能表征其存在的模型的所有参数值,行进前沿似乎在时间上是稳定的。我们通过引入相关恢复参数的缓慢变化来修改系统,并执行前导奇异摄动分析以在结果模型中构建脉冲解。此外,我们获得(按领先顺序)该系统的1参数周期脉冲序列族,对可兴奋细胞的一维环中的凹角脉冲进行建模。

著录项

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"english","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号