首页> 外文OA文献 >Localized Space-Time Autoregressive Parameters Estimation for Traffic Flow Prediction in Urban Road Networks
【2h】

Localized Space-Time Autoregressive Parameters Estimation for Traffic Flow Prediction in Urban Road Networks

机译:城市道路网络交通流预测的本地化时空自回归参数估算

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With the rapid increase of private vehicles, traffic congestion has become a worldwide problem. Various models have been proposed to undertake traffic prediction. Among them, autoregressive integrated moving average (ARIMA) models are quite popular for their good performance (simple, low complexity, etc.) in traffic prediction. Localized Space-Time ARIMA (LSTARIMA) improves ARIMA’s prediction accuracy by extending the widely used STARIMA with a dynamic weight matrix. In this paper, a localized space-time autoregressive (LSTAR) model was proposed and a new parameters estimation method was formulated based on the LSTARIMA model to reduce computational complexity for real-time prediction purposes. Moreover, two theorems are given and verified for parameter estimation of our proposed LSTAR model. The simulation results showed that LSTAR provided better prediction accuracy when compared to other time series models such as Shift, autoregressive (AR), seasonal moving average (Seasonal MA), and Space-Time AR (STAR). We found that the prediction accuracy of LSTAR was a bit lower than the LSTARIMA model in the simulation results. However, the computational complexity of the LSTAR model was also lower than the LSTARIMA model. Therefore, there exists a tradeoff between the prediction accuracy and the computational complexity for the two models.
机译:随着私人车辆的迅速增加,交通拥堵已成为全球问题。已经提出了各种模型来进行交通预测。其中,自回归综合移动平均(Arima)模型在交通预测中的良好性能(简单,低复杂性等)非常受欢迎。本地化时空Arima(Lstarima)通过用动态重量矩阵延伸广泛使用的Starima来提高Arima的预测精度。本文提出了一种局部空间 - 时间自回归(LSTAR)模型,并基于LSTarima模型制定了一种新的参数估计方法,以降低实时预测目的的计算复杂度。此外,给出了两个定理并验证了我们提出的LSTAR模型的参数估计。仿真结果表明,与其他时间序列模型(如换档,自回报(AR),季节性移动普通(季节性MA)和时空AR(星)相比,LSTAR提供了更好的预测精度。我们发现,LSTAR的预测精度比模拟结果中的LSTARIMA模型低一点。然而,LSTAR模型的计算复杂性也低于LSTARIMA模型。因此,预测准确性与两种模型的计算复杂性之间存在权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号