首页> 外文OA文献 >Metal stamping character recognition algorithm based on multi-directional illumination image fusion enhancement technology
【2h】

Metal stamping character recognition algorithm based on multi-directional illumination image fusion enhancement technology

机译:基于多向照明图像融合技术的金属冲压字符识别算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract Metal stamping character (MSC) automatic identification technology plays an important role in industrial automation. To improve the accuracy and stability of segmentation and recognition for MSCs, an algorithm based on multi-directional illumination image fusion technology is proposed. First, four grayscale images are taken with four bar-shape directional light sources from different directions. Next, based on the difference in surface grayscale characteristics for the different illumination directions of the surface’s stamped depression regions and flat regions, the image background is extracted and eliminated. Second, the images are fused using the difference processing on the images in the two groups of relative illuminant directions. Third, mean filter, binarization, and morphological closing operations are performed on the fused image to locate and segment the character string in the image, and the characters are normalized by correcting the skew of the segmented character string. Finally, histogram of oriented gradient features and a backpropagation neural network algorithm are employed to identify the normalized characters. Experimental results show that the algorithm can effectively eliminate the interference of factors such as oil stains, rust, oxide, shot-blasting pits, and different background colors and enhance the contrast between MSCs and background. The resulting character recognition rate can reach 99.6%.
机译:摘要金属冲压性格(MSC)自动识别技术在工业自动化中起着重要作用。为了提高MSCS分割和识别的准确性和稳定性,提出了一种基于多向照明图像融合技术的算法。首先,具有来自不同方向的四个条形方向光源的四个灰度图像。接下来,基于表面灰度特性的不同照明方向的差异,提取和消除图像背景。其次,使用两组相对发光方向上的图像上的图像融合。第三,平均滤波器,二值化和形态学关闭操作在融合图像上执行以定位并划分图像中的字符串,并且通过校正分段字符串的偏差来归一化。最后,采用面向梯度特征的直方图和反向化神经网络算法来识别归一化字符。实验结果表明,该算法可以有效地消除油渍,锈,氧化物,抛丸凹坑和不同背景颜色等因素的干扰,并增强MSC和背景之间的对比度。由此产生的字符识别率可以达到99.6%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号