首页> 外文OA文献 >An Algorithmic Approach for Detecting Bolides with the Geostationary Lightning Mapper
【2h】

An Algorithmic Approach for Detecting Bolides with the Geostationary Lightning Mapper

机译:用地静止闪电映射检测螺栓的算法方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Geostationary Lightning Mapper (GLM) instrument onboard the GOES 16 and 17 satellites can be used to detect bolides in the atmosphere. This capacity is unique because GLM provides semi-global, continuous coverage and releases its measurements publicly. Here, six filters are developed that are aggregated into an automatic algorithm to extract bolide signatures from the GLM level 2 data product. The filters exploit unique bolide characteristics to distinguish bolide signatures from lightning and other noise. Typical lightning and bolide signatures are introduced and the filter functions are presented. The filter performance is assessed on 144845 GLM L2 files (equivalent to 34 days-worth of data) and the algorithm selected 2252 filtered files (corresponding to a pass rate of 1.44%) with bolide-similar signatures. The challenge of identifying frequent but small, decimeter-sized bolide signatures is discussed as GLM reaches its resolution limit for these meteors. The effectiveness of the algorithm is demonstrated by its ability to extract confirmed and new bolide discoveries. We provide discovery numbers for November 2018 when seven likely bolides were discovered of which four are confirmed by secondary observations. The Cuban meteor on Feb 1st 2019 serves as an additional example to demonstrate the algorithms capability and the first light curve as well as correct ground track was available within 8.5 hours based on GLM data for this event. The combination of the automatic bolide extraction algorithm with GLM can provide a wealth of new measurements of bolides in Earth’s atmosphere to enhance the study of asteroids and meteors.
机译:地球静止闪电映射器(GLM)仪器板载GOES 16和17颗卫星可用于检测大气中的火流星。这种能力是独一无二的,因为GLM提供半全局,连续覆盖,并公开发布它的三围。在这里,6个过滤器被开发了被聚合到一个自动算法从GLM二级数据产品提取火球签名。该过滤器利用独特的火球特点,雷电和其它噪声中分辨出火球签名。典型的闪电和火球签名进行了介绍和过滤功能的介绍。该过滤器的性能进行评估上144845个GLM L2文件(等效于数据34天价值),并且该算法选择2252页过滤的文件(对应于1.44%合格率)与火球相似签名。作为GLM达到这些流星分辨率极限识别频繁,但小,分米大小的火球签名的挑战进行了讨论。该算法的有效性是由它的能力证明证实提取物和新发现的火流星。我们为2018年11月发现数到七个火流星很可能被发现其中有四个是由二次观测证实。年02月1日古巴流星基于此事件GLM数据2019点作为额外的例子来说明的算法能力和第一光曲线以及正确地面轨迹为8.5小时内提供。与GLM自动火流星提取算法的组合可以提供丰富的地球大气层的火流星新的测量,以提高小行星和流星的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号