首页> 美国卫生研究院文献>Sensors (Basel Switzerland) >An Algorithmic Approach for Detecting Bolides with the Geostationary Lightning Mapper
【2h】

An Algorithmic Approach for Detecting Bolides with the Geostationary Lightning Mapper

机译:用地球静止闪电测绘仪探测滑坡的一种算法方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Geostationary Lightning Mapper (GLM) instrument onboard the GOES 16 and 17 satellites can be used to detect bolides in the atmosphere. This capacity is unique because GLM provides semi-global, continuous coverage and releases its measurements publicly. Here, six filters are developed that are aggregated into an automatic algorithm to extract bolide signatures from the GLM level 2 data product. The filters exploit unique bolide characteristics to distinguish bolide signatures from lightning and other noise. Typical lightning and bolide signatures are introduced and the filter functions are presented. The filter performance is assessed on 144845 GLM L2 files (equivalent to 34 days-worth of data) and the algorithm selected 2252 filtered files (corresponding to a pass rate of 1.44%) with bolide-similar signatures. The challenge of identifying frequent but small, decimeter-sized bolide signatures is discussed as GLM reaches its resolution limit for these meteors. The effectiveness of the algorithm is demonstrated by its ability to extract confirmed and new bolide discoveries. We provide discovery numbers for November 2018 when seven likely bolides were discovered of which four are confirmed by secondary observations. The Cuban meteor on Feb 1st 2019 serves as an additional example to demonstrate the algorithms capability and the first light curve as well as correct ground track was available within 8.5 hours based on GLM data for this event. The combination of the automatic bolide extraction algorithm with GLM can provide a wealth of new measurements of bolides in Earth’s atmosphere to enhance the study of asteroids and meteors.
机译:GOES 16和17卫星上的对地静止闪电测绘仪(GLM)仪器可用于检测大气中的爆炸物。由于GLM提供半全局,连续的覆盖范围并公开发布其测量结果,因此这种能力是独一无二的。在这里,开发了六个过滤器,这些过滤器被汇总到一个自动算法中,以从GLM 2级数据产品中提取硼化物签名。滤光片利用独特的硼化物特征来区分硼化物特征与闪电和其他噪声。介绍了典型的闪电和硼化物特征,并介绍了过滤器功能。在144845 GLM L2文件(相当于34天的数据)上评估了过滤器性能,并且算法选择了2252个具有类似硼化物特征的过滤文件(通过率为1.44%)。随着GLM达到这些流星的分辨率极限,讨论了识别频繁但小,分米大小的硼化物签名的挑战。该算法的有效性通过其提取已确认的和新的硼化物发现的能力得以证明。我们提供了2018年11月的发现号,当时发现了7个可能的小行星,其中有4个已通过辅助观测得到确认。根据该事件的GLM数据,2019年2月1日的古巴流星作为另一个例子证明了算法的功能,并且在8.5小时内提供了第一条光曲线以及正确的地面轨迹。自动硼化物提取算法与GLM的结合可以提供大量新的地球大气中硫化物的测量值,以增强对小行星和流星的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号