首页> 外文OA文献 >Advanced Statistical Methods for Eye Movement Analysis and Modelling: A Gentle Introduction
【2h】

Advanced Statistical Methods for Eye Movement Analysis and Modelling: A Gentle Introduction

机译:眼球运动分析和建模的高级统计方法:温和介绍

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this Chapter we show that by considering eye movements, and in particular,the resulting sequence of gaze shifts, a stochastic process, a wide variety oftools become available for analyses and modelling beyond conventionalstatistical methods. Such tools encompass random walk analyses and more complextechniques borrowed from the pattern recognition and machine learning fields. After a brief, though critical, probabilistic tour of current computationalmodels of eye movements and visual attention, we lay down the basis for gazeshift pattern analysis. To this end, the concepts of Markov Processes, theWiener process and related random walks within the Gaussian framework of theCentral Limit Theorem will be introduced. Then, we will deliberately violatefundamental assumptions of the Central Limit Theorem to elicit a largerperspective, rooted in statistical physics, for analysing and modelling eyemovements in terms of anomalous, non-Gaussian, random walks and modern foragingtheory. Eventually, by resorting to machine learning techniques, we discuss how theanalyses of movement patterns can develop into the inference of hidden patternsof the mind: inferring the observer's task, assessing cognitive impairments,classifying expertise.
机译:在本章中,我们表明,通过考虑眼部运动,尤其是所产生的凝视变化序列,随机过程,各种各样的用途可用于分析和建模超出传统统计方法。这些工具包括随机步行分析和更多从模式识别和机器学习领域借用的ComplyeChniques。简而言之,虽然批判性,概率巡回了目前的眼睛运动和视觉关注的概率之旅,但我们依靠吉祥语模式分析的基础。为此,将引入Markov进程,Markov进程,Wiener进程和相关随机行走的Gauseian限制定理的高斯框架内的概念。然后,我们将故意违反中央限度定理的无私假设,以引发统计物理的较大,用于分析和建模随机,非高斯,随机散步和现代觅食理论。最终,通过诉诸机器学习技术,我们讨论动作模式的Theanalyses如何发展到隐藏的模式的推理:推断观察者的任务,评估认知障碍,分类专业知识。

著录项

  • 作者

    Giuseppe Boccignone;

  • 作者单位
  • 年度 2019
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号