首页> 外文OA文献 >Prediction Model of Corrosion Current Density Induced by Stray Current Based on QPSO-Driven Neural Network
【2h】

Prediction Model of Corrosion Current Density Induced by Stray Current Based on QPSO-Driven Neural Network

机译:基于QPSO驱动神经网络的杂散电流诱导腐蚀电流密度预测模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The buried pipelines and metallic structures in subway systems are subjected to electrochemical corrosion under the stray current interference. The corrosion current density determines the degree and the speed of stray current corrosion. A method combining electrochemical experiment with the machine learning algorithm was utilized in this research to study the corrosion current density under the coupling action of stray current and chloride ion. In this study, a quantum particle swarm optimization-neural network (QPSO-NN) model was built up to predict the corrosion current density in the process of stray current corrosion. The QPSO algorithm was employed to optimize the updating process of weights and biases in the artificial neural network (ANN). The results show that the accuracy of the proposed QPSO-NN model is better than the model based on backpropagation neural network (BPNN) and particle swarm optimization-neural network (PSO-NN). The accuracy distribution of the QPSO-NN model is more stable than that of the BPNN model and the PSO-NN model. The presented model can be used for the prediction of corrosion current density and provides the possibility to monitor the stray current corrosion in subway system through an intelligent learning algorithm.
机译:在杂散电流干扰下,地铁系统中的埋入管道和金属结构在杂散电流干扰下进行电化学腐蚀。腐蚀电流密度决定了杂散电流腐蚀的程度和速度。在该研究中利用了与机器学习算法结合电化学实验的方法,以研究杂散电流和氯离子的耦合作用下的腐蚀电流密度。在该研究中,建立了量子粒子群优化 - 神经网络(QPSO-NN)模型,以预测杂散电流腐蚀过程中的腐蚀电流密度。采用QPSO算法来优化人工神经网络(ANN)中权重和偏置的更新过程。结果表明,所提出的QPSO-NN模型的准确性优于基于反向化神经网络(BPNN)和粒子群优化 - 神经网络(PSO-NN)的模型。 QPSO-NN模型的精度分布比BPNN模型和PSO-NN模型更稳定。所提出的模型可用于预测腐蚀电流密度,并提供通过智能学习算法监控地铁系统中的杂散电流腐蚀的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号