首页> 外文OA文献 >Identification and Characteristics of Parallel Actuation Robot’s Leg Configuration Using Hammerstein-Wiener Approach
【2h】

Identification and Characteristics of Parallel Actuation Robot’s Leg Configuration Using Hammerstein-Wiener Approach

机译:基于Hammerstein-Wiener方法的并联致动机器人腿部结构识别与特征

摘要

This paper presents the modeling of a leg of Quadruped with Parallel Actuation Leg (QPAL) robot. QPAL leg designed with 3 Degree of Freedom (DOF) configuration with indirect or parallel actuation for each joint mimicking a muscle of life form creature such as insect and bugs classified into shoulder, thigh and shank parts. Indirect actuation configuration on its leg makes this robot has different perspective on joint rotational drive and control. Therefore, this project has taken initiative to identify and modeling this indirect actuation joint by using system identification (SI) in order to obtain a mathematical model of each joint of QPAL robot’s leg. A system identification approach was implemented by employing a Hammerstein-Wiener (HW) model as model structure. The state-space model and the transfer function are designed and generated using Hammerstein-wiener modeling procedures start with experiment setup and data collection from experiment. Continue with data processing, selecting model structure, estimation and validation of the model using system SI toolbox in MATLAB®. The best percentage fits for Joint 1, Joint 2 and Joint 3 are 71.06%, 79.14% and 71.35% respectively, meaning that the estimated model is almost tracking the real output data from the experiments. The model for Joint 1 is ideally acceptable and highly applicable since the correlation curves lie between the confidence interval. While the model for Joint 2 and Joint 3 are considered well and acceptable as the correlation curves are almost lies between the confidence interval. The balances 28.94%, 20.86%, and 28.65% are losses due to nonlinear factor such as friction, backlash, torque, and external disturbance.
机译:本文介绍了具有四边形平行驱动腿(QPAL)机器人的腿的建模。 QPAL腿采用3种自由度(DOF)配置设计,每个关节都通过间接或平行致动来模仿生命生物的肌肉,例如昆虫和被划分为肩膀,大腿和小腿部分的虫子。腿上的间接致动配置使该机器人对关节旋转驱动和控制有不同的看法。因此,该项目主动使用系统识别(SI)来识别和建模此间接驱动关节,以便获得QPAL机器人腿部各关节的数学模型。通过采用Hammerstein-Wiener(HW)模型作为模型结构来实施系统识别方法。使用Hammerstein-wiener建模程序设计和生成状态空间模型和传递函数,该程序从实验设置和实验数据收集开始。使用MATLAB®中的系统SI工具箱,继续进行数据处理,选择模型结构,评估和验证模型。关节1,关节2和关节3的最佳拟合百分比分别为71.06%,79.14%和71.35%,这意味着估计的模型几乎可以跟踪实验的实际输出数据。由于关联曲线位于置信区间之间,因此第1关节的模型在理论上是可以接受的并且具有很高的适用性。虽然关节2和关节3的模型被认为是很好并且可以接受的,但相关曲线几乎位于置信区间之间。余额28.94%,20.86%和28.65%是由于非线性因素(例如摩擦,齿隙,扭矩和外部干扰)而造成的损失。

著录项

  • 作者

    Guni Geogia; Irawan Addie;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号