首页> 外文OA文献 >Multi-state PSO GSA for solving discrete combinatorial optimization problems
【2h】

Multi-state PSO GSA for solving discrete combinatorial optimization problems

机译:用于解决离散组合优化问题的多状态PSO GSA

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There are various meta-heuristics exist in literature nowadays. However, not all metaheuristics were originally d~veloped to operate in discrete search space. Two examples of meta-heuristics are Particle swarm optimization (PSO) and gravitational search algorithm (GSA), which are based on the social behavior of bird flocks and the Newton's law of gravity and the law of motion, respectively. In order to solve discrete combinatorial optimization problems (COPs) using meta-heuristics, modification or enhancement is needed. In the context of the modification, a variety of discretization approaches have been proposed. Inspired by the design of a sequential circuit of digital system, a new discretization approach that leads to the establishment of a complete model of multi-state has been proposed. Based on the multi-state model, a multi-state search space is successfully built using the following two features; a current state and a radius. The multistateudmodel is then implemented in PSO and GSA. As a consequence, multi-state particle swarm optimization (MSPSO) and multi-state gravitational search algorithm (MSGSA) are developed. In the MSPSO and the MSGSA, the radius is represented by new velocity value. The extended version of the multi-state model is then formulated by introducing an embedded rule that ensures the updated solutions to be formed by unrepeated states. As a consequence, multi-state particle swarm optimization with an embedded rule (MSPSOER) and multi-state gravitational search algorithm with an embedded rule (MSGSAER) are developed. These four algorithms can be used to solve discrete combinatorial optimization problems (COPs). To evaluate the performances of the proposed algorithms, several experiments using eighteen sets of selected benchmarks instances of Travelling salesman problem (TSP) and a case study of assembly sequence planning (ASP) problem are conducted. The experimental results showed the newly introduced multi-state PSO GSA are promising compared to binary particle swarm optimization (BPSO) and binary gravitational search algorithm (BGSA) for the TSP and consistently outperformed simulated annealing (SA), genetic algorithm (GA), and BPSO for the ASP in finding optimal solutions.
机译:当今文学中存在着多种元启发式方法。但是,并非所有元启发式方法最初都被开发为在离散搜索空间中运行。元启发式算法的两个示例是粒子群优化(PSO)和重力搜索算法(GSA),它们分别基于鸟群的社会行为以及牛顿的重力定律和运动定律。为了使用元启发式方法解决离散组合优化问题(COP),需要进行修改或增强。在修改的上下文中,已经提出了多种离散化方法。受数字系统时序电路设计的启发,提出了一种新的离散化方法,该方法导致建立完整的多状态模型。基于多状态模型,使用以下两个功能成功构建了多状态搜索空间:当前状态和半径。然后,在PSO和GSA中实现多状态 udmodel。因此,开发了多状态粒子群优化(MSPSO)和多状态重力搜索算法(MSGSA)。在MSPSO和MSGSA中,半径由新的速度值表示。然后,通过引入嵌入式规则来制定多状态模型的扩展版本,该规则可确保更新的解决方案由未重复的状态形成。因此,开发了具有嵌入规则的多状态粒子群优化算法(MSPSOER)和具有嵌入规则的多状态引力搜索算法(MSGSAER)。这四种算法可用于解决离散组合优化问题(COP)。为了评估所提出算法的性能,进行了一些实验,这些实验使用了18组选定的基准测试实例(旅行推销员问题(TSP))和装配顺序计划(ASP)问题的案例研究。实验结果表明,与针对TSP的二进制粒子群优化(BPSO)和二进制重力搜索算法(BGSA)相比,新引入的多状态PSO GSA很有希望,并且始终优于模拟退火(SA),遗传算法(GA)和BPSO为ASP寻找最佳解决方案。

著录项

  • 作者

    Ismail Ibrahim;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号