首页> 外文期刊>International journal of software science and computational intelligence >Population Based Equilibrium in Hybrid SA/PSO for Combinatorial Optimization: Hybrid SA/PSO for Combinatorial Optimization
【24h】

Population Based Equilibrium in Hybrid SA/PSO for Combinatorial Optimization: Hybrid SA/PSO for Combinatorial Optimization

机译:组合优化的混合SA / PSO中基于种群的均衡:组合优化的混合SA / PSO

获取原文
获取原文并翻译 | 示例

摘要

This article introduces a hybrid algorithm combining simulated annealing (SA) and particle swarm optimization (PSO) to improve the convergence time of a series of combinatorial optimization problems. The implementation carried out a dynamic determination of the equilibrium loops in SA through a simple, yet effective determination based on the recent performance of the swarm members. In particular, the authors demonstrated that strong improvements in convergence time followed from a marginal decrease in global search efficiency compared to that of SA alone, for several benchmark instances of the traveling salesperson problem (TSP). Following testing on 4 additional city list TSP problems, a 30% decrease in convergence time was achieved. All in all, the hybrid implementation minimized the reliance on parameter tuning of SA, leading to significant improvements to convergence time compared to those obtained with SA alone for the 15 benchmark problems tested.
机译:本文介绍了一种结合了模拟退火算法(SA)和粒子群优化算法(PSO)的混合算法,以缩短一系列组合优化问题的收敛时间。该实现通过基于群体成员最近的性能的简单而有效的确定对SA中的平衡环进行了动态确定。特别是,作者证明,对于旅行销售员问题(TSP)的多个基准实例,与单独使用SA相比,全局搜索效率略有下降是收敛时间的显着改善。在对另外4个城市列表TSP问题进行了测试之后,收敛时间减少了30%。总而言之,与仅用SA获得的15个基准测试问题相比,混合实施使SA对参数调整的依赖性最小化,从而大大缩短了收敛时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号