首页> 外文OA文献 >Learning on opponent's preferences to make effective multi-issue negotiation trade-offs
【2h】

Learning on opponent's preferences to make effective multi-issue negotiation trade-offs

机译:学习对手的偏好,使有效的多阶段谈判权衡

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Software agents that autonomously act and interact to achieve their design objectives are increasingly being developed for a range of e-commerce applications. In this context, automated negotiation is a central concern since it is the de facto means of establishing contracts for goods or services between the agents. Now, in many cases these contracts consist of multiple issues (e.g. price, time of delivery, quantity, quality) which makes the negotiation more complex than when dealing with just price. In particular, effective and efficient multi-issue negotiation requires an agent to have some indication of its opponent’s preferences over these issues. However, in competitive domains, such as e-commerce, an agent will not reveal this information and so the best that can be achieved is to learn some approximation of it through the negotiation exchanges. To this end,we explore and evaluate the use of kernel density estimation for this purpose. Specifically, we couch our work in the context of making negotiation trade-offs and show how our approach can make the negotiation outcome more efficient for both participants.
机译:自主行动和交互以实现其设计目标的软件代理正越来越多地被开发用于一系列电子商务应用程序。在这种情况下,自动协商是一个中心问题,因为它是在代理之间建立商品或服务合同的事实上的手段。现在,在许多情况下,这些合同包含多个问题(例如价格,交货时间,数量,质量),这使谈判比仅处理价格时更为复杂。特别是,有效且高效的多问题谈判要求代理人在某种程度上表明其对手对这些问题的偏好。但是,在竞争激烈的领域(例如电子商务)中,代理不会透露此信息,因此,最好的方法是通过协商交流来了解该信息。为此,我们探索和评估为此目的使用核密度估计。具体来说,我们在进行权衡取舍的情况下开展工作,并说明我们的方法如何使双方的谈判结果更有效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号