首页> 外文OA文献 >Multilevel Stochastic Gradient Methods for Nested Composition Optimization
【2h】

Multilevel Stochastic Gradient Methods for Nested Composition Optimization

机译:嵌套组成优化的多级随机梯度方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Stochastic gradient methods are scalable for solving large-scale optimizationproblems that involve empirical expectations of loss functions. Existingresults mainly apply to optimization problems where the objectives are one- ortwo-level expectations. In this paper, we consider the multi-levelcompositional optimization problem that involves compositions of multi-levelcomponent functions and nested expectations over a random path. It findsapplications in risk-averse optimization and sequential planning. We propose aclass of multi-level stochastic gradient methods that are motivated from themethod of multi-timescale stochastic approximation. First we propose a basic$T$-level stochastic compositional gradient algorithm, establish its almostsure convergence and obtain an $n$-iteration error bound $O (n^{-1/2^T})$. Thenwe develop accelerated multi-level stochastic gradient methods by using anextrapolation-interpolation scheme to take advantage of the smoothness ofindividual component functions. When all component functions are smooth, weshow that the convergence rate improves to $O(n^{-4/(7+T)})$ for generalobjectives and $O (n^{-4/(3+T)})$ for strongly convex objectives. We alsoprovide almost sure convergence and rate of convergence results for nonconvexproblems. The proposed methods and theoretical results are validated usingnumerical experiments.
机译:随机梯度方法是可扩展的,用于解决涉及损失功能的经验期望的大规模优化问题。现有的结果主要适用于目标的优化问题,其中目标是一级级别的预期。在本文中,我们考虑了多级别致命的优化问题,涉及多级别函数的组成和随机路径上的嵌套期望。它在风险厌恶优化和顺序规划中发现了应用。我们提出了来自多时间尺度随机近似的主题的多级随机梯度方法的aclass。首先,我们提出了一种基本的$ T $ -Level随机成分梯度算法,建立它的差异收敛,获取$ N $〜Mentration错误绑定$ O(n ^ { - 1/2 ^ t})$。然后,我们通过使用Anextapolation插值方案开发加速的多级随机梯度方法,以利用另外的组件功能的平滑度。当所有组件函数都是平滑的,Weallow offergence率改善了收敛速度(n ^ { - 4 /(7 + t)})$ for for generalobjectives和$ o(n ^ { - 4 /(3 + t)}) $的强烈凸起目标。我们alsoprovide几乎肯定的融合和融合结果的非谐波问题。验证了拟议的方法和理论结果,使用数值实验进行了验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号