首页> 外文OA文献 >Analysis of an automobile suspension arm using the robust design method
【2h】

Analysis of an automobile suspension arm using the robust design method

机译:基于稳健设计方法的汽车悬架臂分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis describes the analysis of lower automobile suspension arm using stochastic design improvement technique. The suspension system is one of the most important components of vehicle, which directly affects the safety, performance, noise level and style of it. The objectives of this study are to characterise the dynamic behavior, to investigate the influencing factors of lower suspension arm using FEM incorporating design of experiment (DOE) and artificial neural network (ANN) approach and to analysis the lower suspension arm using robust design method. The structural three-dimensional solid modeling of lower arm was developed using the Solidworks computer-aided drawing software. The three-dimensional solid model then imported to the MSC.PATRAN software and employed to generate meshes and defined material properties for the finite element modeling. The linear elastic analysis was performed using NASTRAN codes. The optimization of lower suspension arm were carried out using stochastic design improvement based on Monte Carlo approach, Response surface methodology (RSM) based on central composite design (CCD) and artificial intelligent technique based on radial basis function neural network (RBFNN). Tetrahedral element with 10 nodes (TET10) and tetrahedral element with 4 nodes (TET4) mesh were used in the stress analysis. The modal analysis was performed with using Lanczos method to investigate the eigenvalue and mode shape. The highest von Mises stresses of TET10 were selected for the robust design parameter. The development from the Stochastic Design Improvement (SDI), RSM and ANN are obtained. The design capability to endure highest load with lower predicted stress is identified through the SDI process. CCD used to predict and assess linear response Von Mises and Displacement on Lower arm systems models. On the other hand, RBFNN used to investigate linear response of lower arm. It can be seen that the robust design was capable to optimize the lower vehicle arm by using stochastic optimization and artificial intelligent techniques. The developed linear model based on SDI and CCD is statistically adequate and can be used to navigate the design space. A new parameter of material can be reconsidered in order to optimize the design. The results can significantly reduce the cost and time to market, improve product reliability and customer confidence. These results can be use as guideline before developing the prototype.
机译:本文介绍了采用随机设计改进技术对汽车下部悬架臂的分析。悬架系统是车辆最重要的组成部分之一,它直接影响车辆的安全性,性能,噪声水平和样式。这项研究的目的是表征动力学行为,结合实验设计(DOE)和人工神经网络(ANN)方法,使用有限元方法研究下悬架臂的影响因素,并使用鲁棒设计方法分析下悬架臂。下臂的三维结构三维实体模型是使用Solidworks计算机辅助绘图软件开发的。然后将三维实体模型导入MSC.PATRAN软件,并用于生成网格和为有限元建模定义的材料属性。使用NASTRAN代码进行线性弹性分析。使用基于蒙特卡洛方法的随机设计改进,基于中央复合设计(CCD)的响应面方法(RSM)和基于径向基函数神经网络(RBFNN)的人工智能技术,对下悬架进行了优化。在应力分析中使用了具有10个节点的四面体单元(TET10)和具有4个节点的四面体单元(TET4)。使用Lanczos方法进行模态分析,以研究特征值和模态形状。选择TET10的最高von Mises应力作为稳健的设计参数。获得了来自随机设计改进(SDI),RSM和ANN的开发。通过SDI流程可以确定以较低的预测应力承受最高负载的设计能力。 CCD用于预测和评估下臂系统模型上的线性响应冯米塞斯和位移。另一方面,RBFNN用于研究下臂的线性响应。可以看出,稳健的设计能够通过使用随机优化和人工智能技术来优化下车臂。基于SDI和CCD开发的线性模型在统计上是足够的,可用于导航设计空间。可以重新考虑材料的新参数以优化设计。结果可以显着降低成本和上市时间,提高产品可靠性和客户信心。这些结果可以在开发原型之前用作指导。

著录项

  • 作者

    Hemin M. Mohyaldeen;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号