首页> 外文OA文献 >Analyzing gene expression data for pediatric and adult cancer diagnosis using logic learning machine and standard supervised methods
【2h】

Analyzing gene expression data for pediatric and adult cancer diagnosis using logic learning machine and standard supervised methods

机译:使用逻辑学习机和标准监督方法分析小儿和成人癌症诊断基因表达数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abstract Background Logic Learning Machine (LLM) is an innovative method of supervised analysis capable of constructing models based on simple and intelligible rules. In this investigation the performance of LLM in classifying patients with cancer was evaluated using a set of eight publicly available gene expression databases for cancer diagnosis. LLM accuracy was assessed by summary ROC curve (sROC) analysis and estimated by the area under an sROC curve (sAUC). Its performance was compared in cross validation with that of standard supervised methods, namely: decision tree, artificial neural network, support vector machine (SVM) and k-nearest neighbor classifier. Results LLM showed an excellent accuracy (sAUC = 0.99, 95%CI: 0.98–1.0) and outperformed any other method except SVM. Conclusions LLM is a new powerful tool for the analysis of gene expression data for cancer diagnosis. Simple rules generated by LLM could contribute to a better understanding of cancer biology, potentially addressing therapeutic approaches.
机译:摘要背景逻辑学习机(LLM)是一种创新的监督分析方法,可根据简单可理解的规则构建模型。在本次调查中,使用一组用于癌症诊断,评估LLM在分类癌症患者中的表现。通过汇总ROC曲线(SROC)分析并由SROC曲线(SAUC)下的区域估计来评估LLM精度。其性能与标准监督方法的交叉验证进行了比较,即:决策树,人工神经网络,支持向量机(SVM)和K最近邻分类。结果LLM显示出优异的精度(SAUC = 0.99,95%CI:0.98-1.0),并且除了SVM之外的任何其他方法都优越。结论LLM是一种新的强大工具,用于分析癌症诊断的基因表达数据。 LLM产生的简单规则可能有助于更好地了解癌症生物学,可能解决治疗方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号