首页> 外文OA文献 >A Novel Intelligent Method for the State of Charge Estimation of Lithium-Ion Batteries Using a Discrete Wavelet Transform-Based Wavelet Neural Network
【2h】

A Novel Intelligent Method for the State of Charge Estimation of Lithium-Ion Batteries Using a Discrete Wavelet Transform-Based Wavelet Neural Network

机译:一种新颖的智能方法,用于使用离散小波变换的小波神经网络的锂离子电池的电荷估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

State of charge (SOC) estimation is becoming increasingly important, along with electric vehicle (EV) rapid development, while SOC is one of the most significant parameters for the battery management system, indicating remaining energy and ensuring the safety and reliability of EV. In this paper, a hybrid wavelet neural network (WNN) model combining the discrete wavelet transform (DWT) method and adaptive WNN is proposed to estimate the SOC of lithium-ion batteries. The WNN model is trained by Levenberg-Marquardt (L-M) algorithm, whose inputs are processed by discrete wavelet decomposition and reconstitution. Compared with back-propagation neural network (BPNN), L-M based BPNN (LMBPNN), L-M based WNN (LMWNN), DWT with L-M based BPNN (DWTLMBPNN) and extend Kalman filter (EKF), the proposed intelligent SOC estimation method is validated and proved to be effective. Under the New European Driving Cycle (NEDC), the mean absolute error and maximum error can be reduced to 0.59% and 3.13%, respectively. The characteristics of high accuracy and strong robustness of the proposed method are verified by comparison study and robustness evaluation results (e.g., measurement noise test and untrained driving cycle test).
机译:费用(SoC)估计变得越来越重要,以及电动车辆(EV)快速发展,而SoC是电池管理系统最重要的参数之一,表明能源剩余和确保EV的安全性和可靠性。在本文中,提出了一种组合离散小波变换(DWT)方法和自适应Wnn的混合小波神经网络(WNN)模型来估计锂离子电池的SOC。 WNN模型由Levenberg-Marquardt(L-M)算法训练,其输入由离散小波分解和重建处理。与背部传播神经网络(BPNN),基于LM的BPNN(LMBPNN),LM基于LM(LMWNN),DWT基于LM的BPNN(DWTLMBPNN)并扩展了Kalman滤波器(EKF),所提出的智能SOC估计方法验证和被证明是有效的。在新的欧洲驾驶周期(NEDC)下,平均绝对误差和最大误差分别降至0.59%和3.13%。通过比较研究和鲁棒性评估结果(例如,测量噪声测试和未经训练的驾驶循环测试)验证了所提出的方法的高精度和强稳健性的特性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号