首页> 外文OA文献 >Machine Learning Interpretability: A Survey on Methods and Metrics
【2h】

Machine Learning Interpretability: A Survey on Methods and Metrics

机译:机器学习解释性:方法和指标调查

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Machine learning systems are becoming increasingly ubiquitous. These systems’s adoption has been expanding, accelerating the shift towards a more algorithmic society, meaning that algorithmically informed decisions have greater potential for significant social impact. However, most of these accurate decision support systems remain complex black boxes, meaning their internal logic and inner workings are hidden to the user and even experts cannot fully understand the rationale behind their predictions. Moreover, new regulations and highly regulated domains have made the audit and verifiability of decisions mandatory, increasing the demand for the ability to question, understand, and trust machine learning systems, for which interpretability is indispensable. The research community has recognized this interpretability problem and focused on developing both interpretable models and explanation methods over the past few years. However, the emergence of these methods shows there is no consensus on how to assess the explanation quality. Which are the most suitable metrics to assess the quality of an explanation? The aim of this article is to provide a review of the current state of the research field on machine learning interpretability while focusing on the societal impact and on the developed methods and metrics. Furthermore, a complete literature review is presented in order to identify future directions of work on this field.
机译:机器学习系统越来越无处不在。这些系统的采用一直在扩大,加速转向更算法的社会,这意味着算法知识的决策具有更大的社会影响潜力。然而,这些准确的决策支持系统中的大多数仍然复杂的黑匣子,这意味着它们的内部逻辑和内部工作隐藏于用户,甚至专家甚至无法完全理解他们预测背后的理由。此外,新的法规和高度监管的域名已制定了强制性的审计和可验证性,提高了对询问,理解和信任机器学习系统的能力的需求,可解释是必不可少的。研究界已经认识到这种可解释性问题,并专注于在过去几年中开发可解释的模型和解释方法。然而,这些方法的出现表明如何对如何评估解释质量没有共识。哪些是评估解释质量的最合适的指标?本文的目的是提供对机器学习解释性的研究领域的当前状态的审查,同时重点关注社会影响以及开发的方法和指标。此外,提出了完整的文献综述,以确定该领域的未来工作方向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号