首页> 外文OA文献 >Facial Dynamics Interpreter Network: What Are the Important Relations Between Local Dynamics for Facial Trait Estimation?
【2h】

Facial Dynamics Interpreter Network: What Are the Important Relations Between Local Dynamics for Facial Trait Estimation?

机译:面部动态解释器网络:面部特质估算的局部动态之间的重要关系是什么?

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Human face analysis is an important task in computer vision. According tocognitive-psychological studies, facial dynamics could provide crucial cues forface analysis. In particular, the motion of facial local regions in facialexpression is related to the motion of other facial regions. In this paper, anovel deep learning approach which exploits the relations of facial localdynamics has been proposed to estimate facial traits from expression sequence.In order to exploit the relations of facial dynamics in local regions, theproposed network consists of a facial local dynamic feature encoding networkand a facial relational network. The facial relational network is designed tobe interpretable. Relational importance is automatically encoded and facialtraits are estimated by combining relational features based on the relationalimportance. The relations of facial dynamics for facial trait estimation couldbe interpreted by using the relational importance. By comparative experiments,the effectiveness of the proposed method has been validated. Experimentalresults show that the proposed method outperforms the state-of-the-art methodsin gender and age estimation.
机译:人脸分析是计算机视觉中的一项重要任务。据tocognitive心理研究,面部动态可以提供重要的线索forface分析。特别是,面部的局部区域中facialexpression运动涉及其他面部区域的运动。在本文中,它利用脸部localdynamics的关系,一种新颖深刻的学习方法,已经提出了从表达sequence.In为了利用局部区域的面部动态的关系估计的面部特征,theproposed网络由面部局部动态特征编码networkand的面部关系网络。面部关系网络设计砥解释。关系的重要性被自动编码和facialtraits通过组合基础上,relationalimportance关系功能估计。面部特征估计couldbe面部动态的关系解释通过使用关系的重要性。通过对比实验,该方法的有效性已得到证实。 Experimentalresults表明,该方法优于国家的最先进的方法在库性别和年龄估计。

著录项

  • 作者

    Seong Tae Kim; Yong Man Ro;

  • 作者单位
  • 年度 2018
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号