首页> 外文OA文献 >Fourier Operational Matrices of Differentiation and Transmission: Introduction and Applications
【2h】

Fourier Operational Matrices of Differentiation and Transmission: Introduction and Applications

机译:傅里叶运行矩阵分化和传输:介绍和应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper introduces Fourier operational matrices of differentiation and transmission for solving high-order linear differential and difference equations with constant coefficients. Moreover, we extend our methods for generalized Pantograph equations with variable coefficients by using Legendre Gauss collocation nodes. In the case of numerical solution of Pantograph equation, an error problem is constructed by means of the residual function and this error problem is solved by using the mentioned collocation scheme. When the exact solution of the problem is not known, the absolute errors can be computed approximately by the numerical solution of the error problem. The reliability and efficiency of the presented approaches are demonstrated by several numerical examples, and also the results are compared with different methods.
机译:本文介绍了具有恒定系数的高阶线性差分和差分方程的傅里叶运行矩阵。此外,我们通过使用Legendre高斯搭配节点扩展了具有可变系数的广义Pinober方程的方法。在诱导仪方程的数值解的情况下,通过剩余函数构建误差问题,并且通过使用所述的搭配方案来解决该误差问题。当问题的确切解决方案是不知道的,可以大致通过错误问题的数值解决方案来计算绝对误差。通过几个数值示例对所示方法的可靠性和效率证明,并且将结果与不同的方法进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号