首页> 外文OA文献 >Feature combination strategies for saliency-based visual attention systems
【2h】

Feature combination strategies for saliency-based visual attention systems

机译:基于显着性的视觉注意系统的特征组合策略

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bottom-up or saliency-based visual attention allows primates to detect nonspecific conspicuous targets in cluttered scenes. A classical metaphor, derived from electrophysiological and psychophysical studies, describes attention as a rapidly shiftable “spotlight.” We use a model that reproduces the attentional scan paths of this spotlight. Simple multi-scale “feature maps” detect local spatial discontinuities in intensity, color, and orientation, and are combined into a unique “master” or “saliency” map. The saliency map is sequentially scanned, in order of decreasing saliency, by the focus of attention. We here study the problem of combining feature maps, from different visual modalities (such as color and orientation), into a unique saliency map. Four combination strategies are compared using three databases of natural color images: (1) Simple normalized summation, (2) linear combination with learned weights, (3) global nonlinear normalization followed by summation, and (4) local nonlinear competition between salient locations followed by summation. Performance was measured as the number of false detections before the most salient target was found. Strategy (1) always yielded poorest performance and (2) best performance, with a threefold to eightfold improvement in time to find a salient target. However, (2) yielded specialized systems with poor generalization. Interestingly, strategy (4) and its simplified, computationally efficient approximation (3) yielded significantly better performance than (1), with up to fourfold improvement, while preserving generality.
机译:自下而上或基于显着性的视觉注意力使灵长类动物能够在混乱的场景中检测到非特定的明显目标。从电生理学和心理物理学研究中衍生出的经典比喻将注意力描述为快速变化的“聚光灯”。我们使用一个模型来重现此聚光灯的注意力扫描路径。简单的多比例“特征图”可检测强度,颜色和方向上的局部空间不连续性,并组合成唯一的“主”图或“显着性”图。通过关注的焦点,以降低的显着性顺序依次扫描显着性图。我们在这里研究将来自不同视觉形态(例如颜色和方向)的特征图组合成唯一的显着图的问题。使用三个自然彩色图像数据库比较了四种组合策略:(1)简单归一化求和,(2)具有学习权重的线性组合,(3)全局非线性归一化后进行求和,(4)随后是显着位置之间的局部非线性竞争通过总结。性能被测量为发现最突出目标之前的错误检测次数。策略(1)总是产生最差的性能,而(2)则是最佳性能,找到重要目标的时间缩短了三倍到八倍。但是,(2)产生了通用性差的专用系统。有趣的是,策略(4)及其简化的计算有效近似值(3)比(1)产生了明显更好的性能,并提高了四倍,同时又保持了通用性。

著录项

  • 作者

    Itti Laurent; Koch Christof;

  • 作者单位
  • 年度 2001
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号