首页> 外文OA文献 >Abnormal Detection of Electricity Consumption of User Based on Particle Swarm Optimization and Long Short Term Memory With the Attention Mechanism
【2h】

Abnormal Detection of Electricity Consumption of User Based on Particle Swarm Optimization and Long Short Term Memory With the Attention Mechanism

机译:基于粒子群优化的用户电力消耗的异常检测和带注意机制的长短短期记忆

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In the process of power transmission and distribution, non-technical losses are usually caused by users’ abnormal power consumption behavior. It will not only affect the dispatch and operation of the distribution network, bring hidden dangers to the security of the power grid, but also damage the operating costs of power companies and disrupt the operation of the power market. Aiming at users’ abnormal electricity consumption behavior, this paper proposes a model based on particle swarm optimization and long-short term memory with the attention mechanism (PSO-Attention-LSTM). Firstly, according to the actual electricity theft behavior, six typical electricity theft modes are summarized, and 4 composite modes are obtained by combining them, so as to comprehensively test the detection performance of the model for various electricity theft behaviors. Secondly, a detection model based on PSO-Attention-LSTM is proposed, and the model is built using the TensorFlow framework. The model uses the attention mechanism to give different weights to the hidden state of LSTM, which reduces the loss of historical information, strengthens important information and suppresses useless information. Use PSO to solve the difficult problem of model parameter selection, and optimize the hyperparameters to improve the model performance. Finally, the data set of the University of Massachusetts was used for simulation and compared with convolutional neural network-long short term memory (CNN-LSTM), attention mechanism-based long short term memory (Attention-LSTM), LSTM, gated recurrent unit (GRU), support vector regression (SVR), random forest (RF) and linear regression (LR) to verify the effectiveness and accuracy of the method used in this article. In this paper, Matlab software is used to analyze and visualize the detection result data.
机译:在电力传输和分配的过程中,非技术性的损失通常是由用户的异常功耗行为引起的。它不仅会影响配电网的调度和运行带来隐患对电网的安全性,还会破坏电力公司的运营成本,扰乱了电力市场的运作。针对用户的异常用电行为,本文提出了一种基于与注意机制(PSO-注意力LSTM)粒子群和长短期记忆的模型。首先,根据实际电力盗窃行为,六种典型盗电模式进行了总结,和4种的复合模式通过组合它们得到的,以全面测试模型的各种电力盗窃行为的检测性能。其次,基于PSO-注意力LSTM检测模型提出的,该模型是使用TensorFlow框架构建。该模型采用注意机制给予不同的权重LSTM,从而降低了历史信息丢失的隐藏状态,加强重要信息,并禁止显示无用的信息。使用PSO解决模型参数选择的难题,优化超参数,以提高模型的性能。最后,用于模拟马萨诸塞大学的数据集,并与卷积神经网络的长短期记忆(CNN-LSTM),注意机制为基础的长短期记忆(注意力LSTM),LSTM,门重复单元相比, (GRU),支持向量回归(SVR),随机森林(RF)和线性回归(LR)来验证本文中所使用的方法的有效性和准确性。在本文中,Matlab软件用于分析和可视化的检测结果数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号