首页> 外文OA文献 >Higher-Order Linear-Time Unconditionally Stable Alternating Direction Implicit Methods for Nonlinear Convection-Diffusion Partial Differential Equation Systems
【2h】

Higher-Order Linear-Time Unconditionally Stable Alternating Direction Implicit Methods for Nonlinear Convection-Diffusion Partial Differential Equation Systems

机译:非线性对流扩散偏微分方程系统的高阶线性时间无条件稳定交替方向隐式方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We introduce a class of alternating direction implicit (ADI) methods, based on approximate factorizations of backward differentiation formulas (BDFs) of order p≥2, for the numerical solution of two-dimensional, time-dependent, nonlinear, convection-diffusion partial differential equation (PDE) systems in Cartesian domains. The proposed algorithms, which do not require the solution of nonlinear systems, additionally produce solutions of spectral accuracy in space through the use of Chebyshev approximations. In particular, these methods give rise to minimal artificial dispersion and diffusion and they therefore enable use of relatively coarse discretizations to meet a prescribed error tolerance for a given problem. A variety of numerical results presented in this text demonstrate high-order accuracy and, for the particular cases of p=2,3, unconditional stability.
机译:我们基于一阶p≥2的后向微分公式(BDF)的近似因式分解,引入一类交替方向隐式(ADI)方法,用于二维,时变,非线性,对流扩散偏微分的数值解笛卡尔域中的方程(PDE)系统。所提出的算法不需要非线性系统的求解,还可以通过使用Chebyshev逼近来产生空间光谱精度的解决方案。特别地,这些方法引起最小的人为分散和扩散,因此它们使得能够使用相对粗糙的离散化来满足针对给定问题的规定的误差容限。本文中给出的各种数值结果证明了高阶精度,对于p = 2,3的特殊情况,它是无条件稳定性的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号