首页> 外文OA文献 >Probing the Interior Structure of Venus
【2h】

Probing the Interior Structure of Venus

机译:探索金星的内部结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The formation, evolution, and structure of Venus remain a mystery more than 50 years after theudfirst visit by a robotic spacecraft. Radar images have revealed a surface that is much youngerudthan those of the Moon, Mercury, and Mars as well as a variety of enigmatic volcanic andudtectonic features quite unlike those we are familiar with on Earth. What are the dynamicudprocesses that shape these features, in the absence of any plate tectonics? What is theirudrelationship with the dense Venus atmosphere, which envelops Venus like an ocean? Toudunderstand how Venus works as a planet, we now need to probe its interior.udConventional seismology for probing the interior of a planet employs extremely sensitiveudmotion or speed detectors in contact with the planetary surface. For Venus, these sensors must beuddeployed on the surface and must tolerate the Venus environment (460 degrees udC and 90 bars) for up to audyear. The dense atmosphere of Venus, which efficiently couples seismic energy into theudatmosphere as infrasonic waves, enables two alternatives: detection of these infrasonic waves inudthe middle atmosphere using a string of two or more microbarometers suspended from a floatingudplatform or detection with an orbiting spacecraft of electromagnetic signatures produced byudinteractions of infrasonic waves in the Venus upper atmosphere and ionosphere. This report,uddescribing the findings of a workshop, sponsored by the Keck Institute of Space Studies (KISS),udconcludes that seismic investigations can be successful conducted from all three vantageudpoints—surface, middle atmosphere, and space. Separately or, better still, together, theseudmeasurements from these vantage points can be used to transform knowledge of Venusudseismicity and the interior structure of Venus.udUnder the auspices of KISS, a multidisciplinary study team was formed to explore theudfeasibility of investigating the interior of the planet with seismological techniques. Most of theudteam’s work was conducted in a five-day workshop held at the KISS facility at the CaliforniaudInstitute of Technology (Caltech) campus from June 2–6, 2014. This report contains the keyudfindings of that workshop and recommendations for future work.udSeismicity of Venus: The study team first performed an assessment of the seismicity ofudVenus and the likelihood that the planet experiences active seismic activity. The morphology ofudthe structural features as well as the youthfulness of the planet surface testifies to the potentialudfor seismic activity. There is plenty of evidence that the crust of Venus has experienced stressudsince the relief of stress is expressed in a wide range of structural features. However, theudcontemporary rate of stress release is unknown and it is possible that, as on Earth, much of thatudstress release is aseismic. Two competing conditions on Venus will influence the likelihood ofudstress release. On the one hand, the lack of water would result in a larger fraction of seismicudenergy release; on the other hand, the higher temperatures would limit the magnitude of stressudrelease events. Experimental measurements on candidate Venus crustal and mantle materialsudmay help define which effect is more important.udOther Sources of Seismic Energy: Volcanic events are also a potential source of seismicudwaves on Venus. Unlike Mars, where volcanic activity appears to have ended, infrared orbitaludmeasurements may indicate that some volcanoes on Venus are still active. Disturbances due toudlarge bolides impacting the atmosphere may also be recorded but are unlikely to be useful forudprobing the planetary interior. More useful than these point sources of energy will be energyudinjected into the subsurface from the dynamic atmosphere by atmosphere-surface coupling. Thisuddistributed source may be useful for probing the subsurface using the methods of ambient noiseudtomography. udAtmospheric Propagation: Acoustic waves from a seismic event are coupled much moreudefficiently into the atmosphere than on Earth. The coupling efficiency is intermediate betweenudthat for the Earth’s atmosphere and the ocean. Signals propagating from directly above theudepicenter or from a surface wave propagating out from the quake epicenter both travel up into theudatmosphere. Because the atmosphere is primarily carbon dioxide, attenuation is higher than itudwould be in an atmosphere with non-polar molecules. The attenuation is frequency dependentudand only impacts frequencies well above 10 Hz at the altitude of a floating platform (54 km). Forudobservations from a space platform, it may be important at much lower frequencies to 1 mHz.udDetection from a Floating Platform: Infrasonic pressure signals emanating either directlyudabove the epicenter of a seismic event or from the (surface) Rayleigh wave can be picked up byudmicrobarometers deployed from a balloon floating in the favorable environment of the middleudatmosphere of Venus atmosphere. Two or more microbarometers deployed on a tether beneathudthe balloon will be needed to discriminate pressure variations caused by an upwardlyudpropagating surface wave resulting from the effects of altitude changes (updrafts anduddowndrafts) and changes in buoyancy of the balloon. The platform will circumnavigate Venusudevery few days enabling a survey of Venus seismicity.udOrbital Detection: Observations from a spacecraft in orbit around Venus enable a broadudrange of techniques for investigating the perturbations of the neutral atmosphere and ionosphereudby seismic waves. Our initial analyses confirm that non-local thermodynamic equilibrium CO_2udemissions on the day side (at 4.3 µm) will present variations induced by adiabatic pressure anduddensity variations and energy deposition created by both acoustic and gravity waves. Foruddetection purposes, the advantage of this emission compared to other ones considered during theudstudy (O_2 night side airglow at 1.27 µm or ultraviolet [UV] day side emission at 220 nm) is audsmoothly varying background with solar zenith angle, because of a strong CO_2 absorption at thisudwavelength below 110 km.udSurface Detection: While important seismic measurements can be made from both balloonudaltitudes and from orbit, the measurement of all three dimensions of the ground motion can onlyudbe made by a sensor on the surface of Venus. However, at present, the technology for seismicudexperiments on the surface of Venus does not exist. Development of a seismic measurementudcapability equivalent to the Seismic and Interior Structure (SEIS) for the Mars InSight (InteriorudExploration using Seismic Investigations, Geodesy and Heat Transport) spacecraft is many yearsudif not decades away. However, useful measurements of the ambient noise on the surface ofudVenus are feasible with existing technology and would be vital for both the design of a futureudseismic station with high sensitivity for teleseismic events and a pair or network of stations thatudcould probe the interior using ambient noise tomography.udSynergistic Observations in All Three Modes: The synoptic orbital view for a remoteudsensing spacecraft in a high orbit would enable not only sensitive detection and localization ofudVenus quakes with excellent background discrimination but potentially precise measurements ofudthe propagation of the seismic surface wave counterpart in the higher atmosphere.udComplementary observations of the same event at the much higher frequencies that are possibleudfrom in situ platforms on the surface and in the middle atmosphere would greatly enhance theudability to survey seismicity and probe the Venus interior.udThe Path Forward: The first step going forward is to develop the detailed requirements ofudthe proposed payloads and to carry out related technology developments and laboratory or fielduddemonstrations. In undertaking this process, we need to know more about the properties ofudpotential Venus crustal and mantle rocks through laboratory studies and the potential of ambient udnoise tomography at Venus through analysis. Once this is done, our strategy for investigating theudinternal structure of Venus is built around programmatic realities—the missions that NASA,udEuropean Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA), and the RussianudFederal Space Agency (RFSA) are currently flying, are under development, or are being planned.udA primary goal should be technology demonstration experiments on Venus missions whereudseismology is not currently an objective. These include infrasonic background measurementsudfrom a Venus balloon and infrared and visible signatures from an orbiter that might beudimplemented under NASA’s Discovery program or as an ESA M-series mission. It would alsoudinclude seismic background signals and a potential active seismic experiment from a short durationudlander such as NASA’s proposed New Frontiers Venus In Situ Explorer (VISE)udmission. This would be followed with a much more capable mission equipped to investigateudseismicity and interior structure. The orbital and balloon platforms needed for such a mission areudalso features of the Venus Climate Mission (VCM), a Flagship mission endorsed by theudPlanetary Science Decadal Survey in 2011. The study team recommends study of a VenusudClimate and Interior Mission (VCIM), which could benefit from commonalities in spacecraftudsystems, and secure the support of the broad planetary science community for its Flagshipudmission for the next decade.
机译:金星的形成,演化和结构在机器人宇宙飞船首次访问之后的50多年仍然是一个谜。雷达图像显示的表面比月球,水星和火星的表面年轻得多,并且具有各种神秘的火山和地壳特征,这与我们在地球上所熟悉的完全不同。在没有板块构造的情况下,塑造这些特征的动态 ud过程是什么?它们与浓密的金星大气(与金星一样包裹着海洋)有什么关系?要了解维纳斯是如何工作的,我们现在需要探究其内部。 ud用于探测行星内部的常规地震学采用与行星表面接触的极其灵敏的动感或速度检测器。对于金星,这些传感器必须在表面上展开,并且必须承受金星环境(460度 udC和90巴)长达a udyear。金星的致密大气层将次声波作为次声波有效地耦合到大气中,提供了两种选择:使用从悬浮的 udplatform悬吊的两个或多个微气压计在中层大气中检测这些次声波。由金星高层大气和电离层的次声波相互作用引起的电磁信号的轨道飞行器。该报告描述了由凯克空间研究所(KISS)赞助的研讨会的结果,结论认为可以从表面,中间大气层和空间这三个有利位置成功进行地震调查。从这些有利的角度单独或更好地结合使用这些测算方法,可以将金星地震性和金星内部结构的知识转化。 ud在KISS的主持下,成立了一个多学科的研究小组以探索可行性用地震技术研究行星内部的过程。 udteam的大部分工作是在2014年6月2日至6日在位于加州 udInstitute of Technology(Caltech)校园的KISS设施举行的为期五天的研讨会中进行的。此报告包含该研讨会的主要 udding和建议 ud金星的地震活动性:研究小组首先对 udVenus的地震活动性以及行星经历活跃地震活动的可能性进行了评估。结构特征的形态以及行星表面的年轻化证明了地震活动的潜在可能性。有大量证据表明,金星的地壳经历了应力,因为应力的缓解表现为多种结构特征。但是,目前的超当代的应力释放速率是未知的,并且有可能在地球上,的现代超应力释放都是抗震的。金星上的两个竞争条件将影响 udstress释放的可能性。一方面,缺水会导致较大的地震,地能释放。另一方面,较高的温度将限制应力释放事件的强度。对候选金星地壳和地幔物质的实验测量 ud可能有助于确定哪种效应更为重要。 ud其他地震能量来源:火山事件也是金星上地震 udwave的潜在来源。与火星火山活动似乎已经结束的火星不同,红外轨道测绘可能表明金星上的一些火山仍处于活跃状态。可能还会记录到由于大爆炸影响大气而造成的干扰,但对扰动行星内部不太可能有用。比这些点更有用的能源将是通过大气-表面耦合从动态大气中注入到地下的能量。该 ud分布的源可能对使用环境噪声 udography的方法探测地下非常有用。大气传播:与地球相比,地震事件产生的声波更有效地耦合到大气中。耦合效率介于地球大气层和海洋之间。从地震中心正上方传播的信号或从地震震中传播的表面波传播的信号都向上传播至大气层。因为大气主要是二氧化碳,所以衰减要比在具有非极性分子的大气中要高。衰减取决于频率,并且仅影响在浮动平台高度(54 km)远高于10 Hz的频率。来自太空平台的 udobservations,它可能在低于1 mHz的低得多的频率上很重要。 ud从浮动平台进行检测:直接通过地震事件的震中或从(表面)瑞利波发出的次声压力信号可以由部署的 udmicrobarometer获取气球漂浮在金星大气中大气压的有利环境中。需要使用两个或更多的气压计部署在气球下方的系绳上,以区分由高度变化(向上和向下气流)和气球浮力的影响所导致的向上不传播的表面波引起的压力变化。该平台将绕金星绕行,每隔几天就可以对金星的地震活动进行调查。 ud轨道检测:从金星周围的轨道飞行器进行的观测,可以提供广泛的各种各样的技术来研究中性大气和电离层的 udud地震波。我们的初步分析证实,当日的非局部热力学平衡CO_2排放(4.3 µm)将表现出绝热压力引起的变化,密度和密度变化以及声波和重力波产生的能量沉积。出于检测目的,与研究过程中考虑的其他发射(O_2夜间侧面辉光为1.27 µm或白天的紫外线[UV]侧面发射为220 nm)相比,该发射的优势在于背景与太阳天顶角的变化非常平滑,由于在低于110 km的这个 udud波长处有很强的CO_2吸收。 udSurface Detection:虽然可以从气球 udtitude和轨道进行重要的地震测量,但是只能通过 ud来进行地面运动的所有三个维度的测量金星表面的传感器。但是,目前尚不存在用于金星表面地震实验的技术。为火星InSight(使用地震勘测,大地测量学和热传输进行的内部 udExploration)航天器开发与地震和内部结构(SEIS)等效的地震测量能力,距离其尚有数年之久。但是,使用现有技术对 udVenus表面上的环境噪声进行有用的测量是可行的,并且对于未来对地震事件具有高灵敏度的 udismic台站的设计以及 udcould可以探测的一对站点或网络都至关重要在所有三种模式下的协同观测:高轨道上的远程/感性航天器的天气轨道视图将不仅能够对 udVenus地震进行灵敏的检测和定位,而且具有出色的背景辨别力,而且有可能精确地测量 ud在较高的大气中传播地震地表波。 ud从地表和中层大气中的现场平台对可能发生的更高频率的同一事件的补充观测,将大大提高 udable的调查能力地震活动并探测金星内部。 ud前进的道路:前进的第一步是确定提出建议的有效载荷的详细要求,并进行相关的技术开发以及实验室或现场的演示。在进行此过程时,我们需要通过实验室研究来了解 u潜在的维纳斯地壳和地幔岩石的性质,以及通过分析来了解在Venus处的环境 udnise层析成像的潜力。完成此操作后,我们围绕金星的 udin内部结构进行研究的策略是围绕程序现实制定的-NASA,ud欧洲航天局(ESA),日本航天探索局(JAXA)和俄罗斯 udFederal航天局( RFSA目前正在飞行中,正在开发中或正在计划中。 ud主要目标应该是针对金星任务的技术演示实验,而目前还不是目标。这些包括来自金星气球的次声背景测量 ud,以及来自轨道飞行器的红外和可见信号,这些信号可能在NASA的“发现”计划中或作为ESA M系列任务实施。它还将 ud包括地震背景信号和来自短时间 udlander的潜在主动地震实验,例如NASA提议的“新边界维纳斯原位探测仪(VISE)” udmission。在此之后,将进行能力更强的任务,以研究地震和内部结构。这种任务所需的轨道和气球平台是维纳斯气候任务(VCM)的功能,维纳斯气候任务(VCM)是2011年 ud行星科学十年调查认可的旗舰任务。研究小组建议研究维纳斯 ud气候和内部任务(VCIM),这可能会受益于航天器 udsystems的共性,并在接下来的十年中获得广泛的行星科学界的支持。

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号