首页> 外文OA文献 >Comparison of maximum likelihood, support vector machines, and random forest techniques in satellite images classification
【2h】

Comparison of maximum likelihood, support vector machines, and random forest techniques in satellite images classification

机译:卫星图像分类中最大可能性,支持向量机和随机林技术的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Context: Nowadays, the images of the Earth surface and the algorithms for their classification are widely available. In particular, the algorithms are promising in the differentiating of cotton crops stages, but it is necessary to establish the capabilities of the different algorithms in order to identify their advantages, and disadvantages.Method: This paper describes the assessment process in which the Support Vector Machines (SVM) and random-forest technique (decision trees) are compared with the maximum likelihood estimation when differentiating the stages of cotton crops. A RapidEye satellite image of a geographic area in the municipality of San Pelayo, Cordoba (Colombia), is used for the study. Using a set of sampling polygons, a random sample of 6000 pixels was taken (2000 training and 4000 for validating the classifications.) Confusion matrices, and R (data processing and analysis software) were used during the validation processResults: The maximun likelihood estimation presented a correct classification percentage of 68.95%. SVM correctly classified 81.325% of the cases and the decision trees correctly classified 78.925%. The confidence test for the classifications showed non-overlapping intervals, and SVM obtained the highest values.Conclusions: It was possible to confirm the superiority of the technique based on support vector machines for the proposed verification zones. However, this technique requires a number of classes that comprehensively represent the variations of the image (in order to guarantee a minimum number of support vectors) to avoid confusion in the classification of non-sampled areas. This was less evident in the other two classification techniques analysed.
机译:背景:如今,地球表面的图像和分类的算法是广泛的。特别地,该算法在棉布作物阶段的区分中具有很有希望的,但是必须建立不同算法的能力,以便识别其优点和缺点。方法:本文介绍了在区分棉田作物阶段时与最大似然估计进行比较的评估过程,其中将载体矢量机(SVM)和随机林技术(决定树)进行比较。 Cordoba(哥伦比亚)圣佩亚诺市政寺的地理区域的剑剑卫星形象用于该研究。使用一组采样多边形,拍摄6000像素的随机样本(2000训练和4000用于验证分类)。在验证过程中使用了混淆矩阵和R(数据处理和分析软件)结果:Maximun似然估计显示出68.95%的正确分类百分比。 SVM正确分类了81.325%的病例,决策树正确分类了78.925%。分类的置信度测试显示了非重叠间隔,并且SVM获得了最高值。结论:可以基于所提出的验证区的支持向量机来确认技术的优越性。然而,该技术需要许多类全面地代表图像的变化(为了保证最小数量的支持向量)以避免在非采样区域的分类中混淆。在分析的其他两个分类技术中,这不太明显。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号