首页> 外文OA文献 >Data Assimilation for Rainfall-Runoff Prediction Based on Coupled Atmospheric-Hydrologic Systems with Variable Complexity
【2h】

Data Assimilation for Rainfall-Runoff Prediction Based on Coupled Atmospheric-Hydrologic Systems with Variable Complexity

机译:基于耦合大气 - 水文系统的降雨径流预测数据同化

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The data assimilation technique is an effective method for reducing initial condition errors in numerical weather prediction (NWP) models. This paper evaluated the potential of the weather research and forecasting (WRF) model and its three-dimensional data assimilation (3DVar) module in improving the accuracy of rainfall-runoff prediction through coupled atmospheric-hydrologic systems. The WRF model with the assimilation of radar reflectivity and conventional surface and upper-air observations provided the improved initial and boundary conditions for the hydrological process; subsequently, three atmospheric-hydrological systems with variable complexity were established by coupling WRF with a lumped, a grid-based Hebei model, and the WRF-Hydro modeling system. Four storm events with different spatial and temporal rainfall distribution from mountainous catchments of northern China were chosen as the study objects. The assimilation results showed a general improvement in the accuracy of rainfall accumulation, with low root mean square error and high correlation coefficients compared to the results without assimilation. The coupled atmospheric-hydrologic systems also provide more accurate flood forecasts, which depend upon the complexity of the coupled hydrological models. The grid-based Hebei system provided the most stable forecasts regardless of whether homogeneous or inhomogeneous rainfall was considered. Flood peaks before assimilation were underestimated more in the lumped Hebei model relative to the other coupling systems considered, and the model seems more applicable for homogeneous temporal and spatial events. WRF-Hydro did not exhibit desirable predictions of rapid flood process recession. This may reflect increasing infiltration due to the interaction of atmospheric and land surface hydrology at each integration, resulting in mismatched solutions for local runoff generation and confluence.
机译:数据同化技术是减少数值天气预报(NWP)模型中的初始条件误差的有效方法。本文评估了天气研究和预测(WRF)模型及其三维数据同化(3DVAR)模块的潜力,提高了通过耦合的大气 - 水文系统提高了降雨径流预测的准确性。随着雷达反射率和常规表面和上空观测的同化的WRF模型为水文过程提供了改进的初始和边界条件;随后,通过将WRF耦合,通过集体,基于网格的河北模型和WRF-Hydro建模系统来建立三种具有可变复杂性的大气压水文系统。选择了来自中国北部山区集水区的不同空间和时间降雨分布的四场风暴事件被选为研究对象。同化结果表明,降雨积累的准确性的一般性提高,与没有同化的结果相比,具有低根均方误差和高相关系数。耦合的大气 - 水文系统还提供更准确的洪水预测,这取决于耦合水文模型的复杂性。无论是否考虑了均匀或不均匀降雨,基于网格的河北系统提供了最稳定的预测。在相对于所考虑的其他耦合系统的河北模型中,同化前的洪水峰被再次低估,并且该模型似乎更适用于均匀的时间和空间事件。 WRF-Hydro没有表现出快速洪水过程衰退的理想预测。这可能会反映由于大气和陆地表面水文的相互作用在每个集成中的相互作用,导致局部径流发电和汇合的不匹配解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号