首页> 外文OA文献 >A Multiobjective Programming Method for Ranking All Units Based on Compensatory DEA Model
【2h】

A Multiobjective Programming Method for Ranking All Units Based on Compensatory DEA Model

机译:基于补偿性DEA模型排名所有单位的多目标编程方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In order to rank all decision making units (DMUs) on the same basis, this paper proposes a multiobjective programming (MOP) model based on a compensatory data envelopment analysis (DEA) model to derive a common set of weights that can be used for the full ranking of all DMUs. We first revisit a compensatory DEA model for ranking all units, point out the existing problem for solving the model, and present an improved algorithm for which an approximate global optimal solution of the model can be obtained by solving a sequence of linear programming. Then, we applied the key idea of the compensatory DEA model to develop the MOP model in which the objectives are to simultaneously maximize all common weights under constraints that the sum of efficiency values of all DMUs is equal to unity and the sum of all common weights is also equal to unity. In order to solve the MOP model, we transform it into a single objective programming (SOP) model using a fuzzy programming method and solve the SOP model using the proposed approximation algorithm. To illustrate the ranking method using the proposed method, two numerical examples are solved.
机译:为了在相同的基础上对所有决策单位(DMUS)进行排名,本文提出了一种基于补偿数据包络分析(DEA)模型的多目标编程(MOP)模型,以推导出可用于的常见重量集所有DMU的全部排名。我们首先重新撤消排名所有单位的补偿性DEA模型,指出了解决模型的现有问题,并呈现了一种改进的算法,通过求解一系列线性编程,可以获得模型的近似全局最佳解决方案。然后,我们应用了补偿性DEA模型的关键思想来开发拖把模型,其中目标是在约束下同时最大化所有常见权重,所有DMU的效率值等于单位和所有常见权重的总和也等于统一。为了解决MOP模型,我们使用模糊编程方法将其转换为单个客观编程(SOP)模型,并使用所提出的近似算法来解决SOP模型。为了说明使用所提出的方法的排名方法,解决了两个数值示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号